• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoindentation Techniques for the Evaluation of Silicon Nitride Thin Films

Mangin, Weston T 01 December 2016 (has links)
Silicon nitride thin films are of interest in the biomedical engineering field due to their biocompatibility and favorable tribological properties. Evaluation and understanding of the properties of these films under diverse loading and failure conditions is a necessary prerequisite to their use in biomedical devices. Three wafers of silicon nitride-coated silicon were obtained from Lawrence Livermore National Laboratory and used to create 96 samples. Samples were subjected to nanoindentation testing to evaluate the mechanical properties of the film. Samples were subjected to nanoimpact testing to compare the damage resistance of the film to separate nanoimpact types. Samples were subjected to nanoscratch testing to evaluate the consistency of the critical load of the film. Results showed that there were no significant differences in the mechanical properties of the film across the tested groups. There was a significant difference observed in the rate of damage to the film between pendulum oscillation nanoimpact testing and sample oscillation nanoimpact testing, with the former causing more damage with all experiment variables controlled for. Results showed that the critical load measure for the film was significantly different between different nanoscratch test parameters. The conclusions from this study will support future work for in vitro and in vivo testing of ceramic thin films for biomedical applications.
2

THERMOMECHANICAL MEASUREMENTS OF ZIRCALOY-4: APPLICATION OF RAMAN THERMOMETRY AND NANO-MECHANCIAL TESTING TECHNIQUES

Hao Wang (7486526) 17 October 2019 (has links)
Zirconium alloys (zircaloy) have been widely used in light water reactors due to their good thermomechanical properties, corrosion resistance, and low thermal neutron absorption rate. As one of the most important safety barriers, cladding is not only used to encapsulate nuclear fuel, but also to prevent the nuclear fission products from leaking into the coolant. During the operation of nuclear reactors, hydride will form in zircaloy and significantly degrade the tensile strength, ductility, fracture toughness, and creep behavior of the cladding, and eventually leading to the failure of cladding. Therefore, understanding the material properties of zircaloy and its hydrides is crucial to the safety of power plants. In this study, the mechanical Raman spectroscopy and nano-mechancial testing techniques were used to perform thermomechanical measurements and damage analysis of zircaloy-4. The Raman thermometry method was used to measure localized spatially resolved thermal conductivity and establish the potential linkage of microstructure to thermal and mechanical properties of zircaloy-4. The local thermal conductivity values showed to increase with increase in grain size. Nanoindentation and nano-scale impact techniques were used to obtain the viscoplastic constitutive relation of hydrides at elevated temperatures. Based on the obtained viscoplastic model, fracture strength of hydrides was predicted by using finite element method (FEM) simulations. An extended Gurson-Tvergaard-Needleman (GTN) model was used to study the macro-scale fracture behavior of hydrided zircaloy-4 structures. Good agreement between calculated and experimental results was obtained for various boundary conditions.

Page generated in 0.0337 seconds