• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approaching the Landauer limit via nanomechanical resonators

Wenzler, Josef-Stefan January 2011 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / According to the von Neumann-Landauer principle (VNL) for every bit of information lost during a computation, kT ln 2 amount of heat is dissipated into the environment. Irreversible logic, the basis of modern computing, inevitably leads to loss of information and is thus fundamentally bound by the VNL principle. However, its validity has been challenged since its inception and the case concerning its legitimacy is still open. Due to the tiny energy scales involved, this debate has been entirely academic in nature and an experimental test of the VNL principle is highly desired by both proponents and skeptics. Such a test would entail contrasting the energy dissipation of irreversible and reversible logic. In particular, we need to perform a non trivial logic both reversibly and irreversibly based on identical technology, testing whether or not energy dissipation for the reversible computation can be less than VNL limit while the irreversible computation is limited by the VNL limit. Reversible logic does not entail information loss, and hence is not bound by the VNL limit. It offers the potential for indefinite performance improvements of digital electronics. Bennett's Turing machine first proved that any computation can be performed reversibly and, in the proper limit, without energy cost. This promise of computing for free has spurred Fredkin, Toffoli, Wilczek, Feynman and others to propose reversible logic gates, though very few experimentally-realized reversible logic gates have since been reported. Here, we experimentally demonstrate for the first time the core of a logically reversible, CMOS-compatible, scalable nanoelectromechanical Fredkin gate, a universal logic gate from ... [TRUNCATED] / 2999-01-01
2

A numerical investigation of the effects of laser heating on resonance measurements of nanocantilevers

Kutturu, Padmini 08 January 2019 (has links)
Nanomechanical resonators (NR) are cantilevers or doubly clamped nanowires (NW) which vibrate at their resonance frequency. These nanowires with picogram-level mass and frequencies of the order of MHz can resolve added mass in the attogram (10-18 g) range, enabling detection of a few molecules of cancer biomarkers based on the shift in resonance frequency. Such biomarker detection can help in the early stage detection of cancer and also aid in monitoring the treatment procedure in a more advanced stage. Optical transduction is one of the methods to measure the resonance frequency of the cantilever. However, there is a dependence of measured resonance frequency on the polarization of light and the laser power coupled as thermal energy into the cantilever during the measurement. This thesis presents a numerical model of the nanocantilever and shows the variation in resonance frequency and amplitude due to varied amounts of energy absorption by the NW from the laser during resonance measurements. This thesis answers questions on the effects of laser heating by calculating the temperature distribution in the NW, which changes the Young’s modulus and stiffness, causing a resonance downshift. It also shows the variation of resonance amplitude, affecting signal strength in measurements, by considering the effects of structural damping. In this work, a numerical model of the nanowire was analyzed to determine the temperature rise of the NW due to laser heating. The maximum temperature was calculated to be about 500 K with 1 mW of laser power absorbed in Silicon NWs and it is shown that the nanowire tip would reach its melting point for about 2.6 mW of laser power absorbed by it. The resonance shift due to attained temperature of the NW was calculated. The frequency is predicted to decrease by 24 kHz for a 11.6 MHz resonator, when 2mW of laser power is absorbed. However, the frequency shift is mode-dependent and is larger for higher modes. The variation in vibration amplitude around the resonance peaks is calculated based on the effects of structural damping. This can be used to decide on the suspension height of the NW above the substrate, before fabrication. This calculation also provides a method to study the variation in material damping due to temperature. Finally, a semi-analytical method for calculating the frequency of a cantilever beam with varying Young’s modulus is derived to examine the validity of the results calculated above. An effective Young’s modulus value for the laser heated NW is given, which serves as a correction factor for the resonance shift. The derivation is then extended to calculate the resonance shift with an addition of a mass to the beam of varying Young’s modulus. / Graduate / 2019-12-13
3

Investigation of Nonlinearities in Graphene Based NEMS

Parmar, Marsha Mary January 2016 (has links) (PDF)
Nanoelectromechanical systems (NEMS) have drawn considerable attention towards several sensing applications such as force, spin, charge and mass. These devices due to their smaller size, operate at very high frequencies (MHz - GHz) and have very high quality factors (102 -105). However, the early onset of nonlinearity limits the linear dynamic range of these devices. In this work we investigate the nonlinearities and their effect on the performance of graphene based NEMS. Electromechanical devices based on 2D materials are extremely sensitive to strain. We studied the effect of strain on the performance of single layer Graphene NEMS and show how the strain in Graphene NEMS can be tuned to increase the range of linear operation. Electromechanical properties of the doubly clamped graphene resonators deviates from the flat rectangular plate as the former possesses geometrical imperfections which are sometimes orders of magnitude larger than the thickness of the resonator. Due to these imperfections we report an initial softening behavior, turning to strong hardening nonlinearity for larger vibration amplitude in the back-bone curve. We have also studied the frequency stability of graphene resonators. Frequency stability analysis indicates departure from the nominal frequency of the resonator with time. We have used Allan Variance as a tool to characterize the frequency stability of the device. Frequency stability of graphene resonator is studied in an open loop configuration as a function of temperature and bias voltage. The thesis concludes with a remark on the future work that can be carried out based on the present studies.

Page generated in 0.0974 seconds