• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and gas sensing properties of pure and au-functionalised W03 nanoneedle-like structures, synthesised via aerosol assisted chemical vapour deposition method

Stoycheva, Toni 15 November 2011 (has links)
En esta tesis doctoral, se ha investigado y desarrollado un nuevo método de CVD asistido por aerosol (AACVD), que permite el crecimiento de nanoestructuras de WO3 intrínsecas y funcionalizadas con Au. Así mismo se han depositado capas policristalinas de SnO2 para aplicaciones de detección de gases. La síntesis de materiales nanoestructurados, la fabricación de dispositivos y sus propiedades de detección de gases, han sido estudiadas. El método AACVD fue utilizado para la síntesis y la deposición directa de capas activas encima de sustratos de alúmina y también sobre substratos micromecanizados (microhotplates), lo que demuestra la compatibilidad entre la tecnología de silicio y la deposición de la capas activas nanoestructuradas. En la tesis se ha demostrado que las capas nanoestructuradas de WO3 funcionalizadas con oro tienen una sensibilidad mejor que las intrínsecas frente a algunos gases relevantes y al mismo tiempo se ha producido un cambio de selectividad. / In this doctoral thesis, it has been investigated and developed the Aerosol Assisted Chemical Vapour Deposition (AACVD) method for direct in-situ growth of intrinsic and Au-functionalised nanostructured WO3, as well as SnO2-based devices for gas sensing applications. The nanostructured material synthesis, device fabrication and their gas sensing properties have been studied. AACVD method was used for synthesis and direct deposition of sensing films onto classical alumina and microhotplate gas sensor substrates, demonstrating the compatibility between the microhotplate fabrication process and the sensing nanostructured layer deposition. The effect of Au nanoparticles on the gas sensor’s response was measured and presented in this thesis. The test results revealed that the addition of Au nanoparticles to the WO3 nanoneedles has increased the sensor’s response towards the tested gases (i.e. EtOH). It was therefore demonstrated that the Au-functionalisation has an enhancing effect on the gas sensing properties of WO3 nanoneedles
2

RATIONAL DESIGN OF VERTICAL SILICON NANONEEDLES FOR OCULAR DRUG DELIVERY AND INTRACELLULAR RECORDING

Woohyun Park (15307423) 17 April 2023 (has links)
<p>The use of silicon nanoneedles provides a unique and versatile biointerface for a range of biomedical applications. In this work, we propose a rational design for vertical Si nanoneedles that are printed on a polymer substrate for ocular drug delivery, intracellular recording, and intra-organoid sensing. To enable minimally invasive and long-term sustained delivery of ocular drugs, we integrate vertical Si nanoneedles with a tear-soluble contact lens for ocular drug delivery. We demonstrate the effectiveness of this platform in treating corneal neovascularization in an in vivo rabbit model, surpassing the current gold standard surgical therapy. This platform has the potential to revolutionize the management of various chronic ocular diseases without causing significant side effects.</p> <p>To enable intracellular recording, we present a unique platform consisting of vertical Si nanoneedles coated with a thin, transparent network of Au-Ag nanowires. This platform is held in place and enclosed by a soft, transparent elastomer, providing simultaneous intracellular recording and live imaging with applications in neuroscience, cardiology, muscle physiology, and drug screening. To demonstrate the utility of this platform, we monitored electrical potentials from cardiomyocyte cells and cardiovascular organoids. Additionally, we propose an intra-organoid sensing platform with vertical Si nanoneedles transfer printed into a soft scaffold. This platform can be adjusted and tailored for various organoids and tumor tissues of interest, or used to deliver bioactive molecules of interest into organoids in response to external stimuli.</p> <p>Our proposed designs of vertical Si nanoneedles based platforms demonstrate their significant potential for a broad range of biomedical applications, including ocular drug delivery, intracellular recording, and intraorganoid sensing. These platforms have the potential to revolutionize current approaches and pave the way for future developments in biomedical research and clinical applications, offering new possibilities for the diagnosis and treatment of a wide range of diseases.</p>

Page generated in 0.0204 seconds