Spelling suggestions: "subject:"nanopart?aulas superparamagnetic?ticas"" "subject:"nanopart?aulas superparamagnetism?ticas""
1 |
S?ntese e caracteriza??o de nanopart?culas superparamagn?ticas para aditiva??o de lubrificantes industriais / Synthesis and characterization of superparamagnetic nanoparticles for additive of industrial lubricantsGuedes, Ana Em?lia Diniz Silva 14 March 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-11-22T20:52:06Z
No. of bitstreams: 1
AnaEmiliaDinizSilvaGuedes_TESE.pdf: 9494896 bytes, checksum: 3ab916a68a0925f9bdd33da14e59c06b (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-11-23T23:34:34Z (GMT) No. of bitstreams: 1
AnaEmiliaDinizSilvaGuedes_TESE.pdf: 9494896 bytes, checksum: 3ab916a68a0925f9bdd33da14e59c06b (MD5) / Made available in DSpace on 2017-11-23T23:34:34Z (GMT). No. of bitstreams: 1
AnaEmiliaDinizSilvaGuedes_TESE.pdf: 9494896 bytes, checksum: 3ab916a68a0925f9bdd33da14e59c06b (MD5)
Previous issue date: 2017-03-14 / A obten??o de nanomateriais com propriedades espec?ficas para aditiva??o de ?leo para lubrificante industrial ainda ? um desafio, mas tem gerado expectativas que podem minimizar problemas de cunho tribol?gico, onde o atrito e o desgaste s?o os principais respons?veis por falhas em equipamentos e m?quinas. O objetivo desta tese foi determinar condi??es ?timas de s?ntese de nanopart?culas via micro-ondas para gerar nanopart?culas de ?xidos de ferro com propriedades caracter?sticas para serem aplicadas a lubrificantes. Para tanto, variou-se pot?ncia e tempo de s?ntese em tr?s niveis, para avaliar suas influ?ncias nas propriedades f?sico-qu?micas das nanopart?culas. A caracteriza??o das nanopart?culas foi realizada por DRX, MEV, MET, SAXS, UV-vis, FTIR e PPMS. Ap?s a caracteriza??o, foram selecionadas as nanopart?culas que apresentassem morfologia com tend?ncia esf?rica, que n?o sofreram oxida??o ap?s a s?ntese, resultando em fases mais est?veis do ?xido de ferro. Ap?s a aditiva??o destes ?xidos em uma base lubrificante, avaliou-se o desempenho tribol?gico deste ferrofluido atrav?s de trib?metro esfera sobre disco na presen?a e aus?ncia de um campo magn?tico fixo e constante. As an?lises tribol?gicas do a?o e o desempenho do lubrificante foram realizados atrav?s do coeficiente de atrito e caracteriza??o do desgaste do disco atrav?s do MEV. O processo de s?ntese das nanopart?culas estudado se mostrou eficiente e mais r?pido que as tradicionais, com caracter?sticas superparamagn?ticas e tamanho de gr?o abaixo de 15 nm. Percebeu-se ainda a exist?ncia de uma correla??o entre o tamanho de gr?o e tempo de s?ntese, e que estes nano-?xidos permaneceram est?veis ? oxida??o ao final do processo. O recobrimento e uso de dispersante permitiu obter solu??es est?veis. As SPIONS (nanopart?culas superparamagn?ticas), como aditivos, tiveram bom comportamento antidesgaste e redutor do atrito, podendo ser comparadas a um lubrificante comercial, tendo resultados superiores quando o nanolubrificante ? exposto a um campo magn?tico fixo. / The obtaining of nanomaterials with specific properties for additivation of oil for industrial lubricant is still a challenge, but there are some expectations that may minimize tribological problems, which are primarily responsible for failures in equipment and machinery. The purpose of this thesis is to determine the optimal conditions for synthesis of these nanoparticles by microwaves, which generate nanoparticles of iron oxides with specific properties to be applied to lubricants. For this, power and time of synthesis were varied in 3 levels to evaluate their influence on the physicochemical properties of the nanoparticles. The characterization of the nanoparticles was performed by XRD, SEM, TEM, SAXS, UV-Vis, FTIR, VSM and PPMS. After characterization, the nanoparticles that presented morphology with a spherical tendency and which did not undergo oxidation after synthesis were selected, resulting in more stable phases of iron oxide. After the addition of these oxides in a lubricant base, it was evaluated the tribological performance of this ferrofluid through tribometer sphere on disk in the presence and absence of a fixed and constant magnetic field. The tribological analyzes of the steel and the performance evaluation of the lubricant were performed through wear characterization on the disc via SEM and considering the coefficient of friction during the tests, respectively. The nanoparticle synthesis process was more efficient and faster than traditional nanoparticles with superparamagnetic characteristics and grain size below 15 nm. It is further noticed the existence of a correlation between grain size and time syntheses. Also, the nano-oxides remained stable upon oxidation at the end of the process. The coating and the usage of dispersant resulted in stable solutions. SPIONS (superparamagnetic nanoparticles) as additives had anti-wear and friction-reducing behavior, although it varied with the type of sample, quantity of the additive and presence or absence of the magnetic field. Although some SPIONS presented as additives have good anti-wear and friction-reducing behavior, it can be compared to a commercial lubricant, having better superior results when the nanolubrifier is exposed to a fixed magnetic field.
|
2 |
Efeitos dipolares sobre fases magn?ticas de aglomerados superparamagn?ticosPedrosa, Silas Sarmento 15 September 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2018-01-24T12:09:54Z
No. of bitstreams: 1
SilasSarmentoPedrosa_TESE.pdf: 13307553 bytes, checksum: 616db20e12e34747afe3ca24c303b31a (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-01-26T12:09:55Z (GMT) No. of bitstreams: 1
SilasSarmentoPedrosa_TESE.pdf: 13307553 bytes, checksum: 616db20e12e34747afe3ca24c303b31a (MD5) / Made available in DSpace on 2018-01-26T12:09:55Z (GMT). No. of bitstreams: 1
SilasSarmentoPedrosa_TESE.pdf: 13307553 bytes, checksum: 616db20e12e34747afe3ca24c303b31a (MD5)
Previous issue date: 2017-09-15 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / H? presentemente grande interesse de pesquisa em aglomerados de nanopart?culas superparamagn?ticas,
devido em parte ? alta demanda para aplica??es biom?dicas, e ao mesmo
tempo ao grande interesse, do ponto de vista fundamental, em novas fases magn?ticas. A suscetibilidade
magn?tica inicial e o campo de fuga, s?o fatores essenciais para otimiza??o de sistemas
para aplica??es biom?dicas. H?, ao mesmo tempo, grande interesse em confirmar a exist?ncia
de ferromagnetismo dipolar, em sistemas onde a energia de troca n?o ? fator dominante.
Desenvolvemos um estudo te?rico do impacto da intera??o dipolar sobre as fases magn?ticas de
nanopart?culas superparamagn?ticas, confinadas em aglomerados esf?ricos e elipsoidais. Consideramos
nanopart?culas de Fe3O4 com tamanhos no intervalo de 9 nm a 12 nm, arranjadas
com densidade uniforme em aglomerados de tamanho da ordem de centenas de nan?metros.
Mostramos que as fases magn?ticas, e a suscetibilidade inicial, s?o controladas pela intera??o
dipolar, e que a topologia do arranjo de nanopart?culas, o tamanho das nanopart?culas e a densidade
de empacotamento s?o fatores que controlam as propriedades magn?ticas. Mostramos que
a intera??o dipolar pode estabilizar fases magn?ticas cl?ssicas, conhecidas apenas para sistemas
com alto conte?do de energia de troca e de anisotropia. Al?m disso, as fases magn?ticas em
reman?ncia t?m uma caracter?stica peculiar: a m?dia t?rmica do momento de cada nanopart?cula
pode se aproximar do valor de satura??o, mantendo o aglomerado superparamagn?tico.
Aglomerados elipsoidais de alta excentricidade s?o os sistemas de escolha para aplica??es biom?dicas
porque podem exibir expressivo aumento de suscetibilidade magn?tica, mantendo um
campo de fuga de baixa intensidade em reman?ncia. O modelo te?rico reproduz satisfatoriamente
resultados experimentais de aglomerados esf?ricos de Fe3O4, e de sistemas de part?culas
de Fe e Co de baixa dimensionalidade. / Superparamagnetic nanoparticles clusters are currently driving considerable research
attention. The interest stems from chances of designing systems with promising potential for
technological applications, and from the fundamental viewpoint, tailoring new magnetic phases.
The initial magnetic susceptibility and the stray field, at remanence, are key features for the
optimization of magnetic systems for biomedical applications. Also, the existence of dipolar
ferromagnetism, in the absence of exchange energy, has been one of the focus of magnetism
for decades. We report a theoretical discussion of the impact of the dipolar interactions on the
magnetic phases of superparamagnetic nanoparticles confined in spherical and ellipsoidal clusters.
We consider Fe3O4 nanoparticles, with size ranging from 9 nm to 12 nm, arranged with
uniform density in hundreds nanometer size volumes. We show that the magnetic phases, and
the initial susceptibility, are controlled by the dipolar interaction. Also, the topological nanoparticle
arrangement, the nanoparticle size, and the packing density, are key features. We show that
the dipolar interaction alone may stabilize classical magnetic phases, well known for systems
with large content of exchange and anisotropy energies. In addition, we have found that at remanence
the nanoparticles clusters magnetic phase have a unique property. The dipolar energy
leads to thermal stabilization of the individual nanoparticles moments. Large nanoparticles densities
may allow nearly full thermal value of the nanoparticles magnetic moments. Despite this,
the nanoparticles cluster is superparamagnetic, with a rather small stray field at remanence, as
required for biomedical safety. Nanoparticle clustering in large eccentricity ellipsoidal volumes
are promising systems for both low field and large field biomedical applications. For low field
applications, there is a large increase in the initial susceptibility, with enhancement in the efficacy
of vector targeting and also for hyperthermia absorption rate. For high field applications,
the enhancement of the stray is much stronger than that for spherical clusters. Our theoretical
model reproduces typical properties of Fe3O4 nanoparticles spherical clusters, as well as
intriguing results for Fe and Co quasi-one-dimensional systems.
|
Page generated in 0.128 seconds