Spelling suggestions: "subject:"nanophotonique silicium"" "subject:"nanophotonique filicium""
1 |
Etude en champ proche optique de structures nanophotoniques couplées / Near-field optic study of coupled nanophonic structuresFoubert, Kevin 04 January 2011 (has links)
Depuis une vingtaine d’années, l’optique bénéficie des avancées considérables de la microélectronique.Ainsi, il est maintenant possible de produire, guider, confiner ou encore ralentirla lumière sur puce à une échelle sub-longueur d’onde. Dans cette thèse, nous étudions de telscomposants par l’intermédiaire d’un microscope en champ proche optique (SNOM).La première partie présente une vision d’ensemble de la situation actuelle en nanophotoniqueintégrée sur substrat diélectrique. Elle expose plusieurs enjeux et faits marquants récents dansce domaine. Elle introduit également le principe physique et le fonctionnement d’un SNOMdans les grandes lignes.La seconde partie est consacrée à la microscopie en champ proche optique d’un point devue instrumental. Après une analyse physique, nous détaillons le montage de notre propremicroscope sur le banc de caractérisation optique du laboratoire, avant d’analyser la formationdes images optiques obtenues avec cette technique.La troisième partie concerne l’étude de guides d’onde couplés en Silicium sur isolant (SOI),dans lesquels s’intègrent des nano-cavités optiques. Les phénomènes de couplage par recouvrementde champs évanescents sont étudiés numériquement et analytiquement. L’analyse de cesstructures grâce au SNOM nous a permis d’une part de vérifier la validité de ces modèles, etd’autre part d’observer directement le guidage et le confinement de la lumière dans un milieude faible indice de réfraction. Nous montrons cependant que ces résultats restent très sensiblesaux aléas de fabrication. Enfin, nous mettons en évidence grâce au SNOM et à des mesuresspectrales que la description de structures de N cavités juxtaposées peut être approchée par lathéorie des modes couplés. / Since the end of the XXth century, optics benefits from significant breakthrough comingfrom the micro-electronic technologies. It is thus now possible to produce, guide, slow downor even trap light on a chip at a sub-wavelength scale. In this thesis, we study such opticalcomponents thanks to a Scanning Near-Field Optical Microscope (SNOM).The first part exposes an overall view of the current situation in the field of dielectricsubstrate integrated nanophotonics. Some of the recent outstanding issues and results are hereintroduced, as well as the general principle and the necessary tools to operate a SNOM.The second part is dedicated to optical near-field microscopy, technically speaking. Thephysical rules are here developed. Then we detail the instrumental set up of our own SNOMon our optical characterization bench. We end by analysing the optical images formation witha SNOM.The third part bears upon the study of Silicon-on-Insulator (SOI) coupled waveguides whereoptical nano-cavities could be inserted, by resorting to the previously implemented SNOM.Overlapping evanescent fields induced coupling phenomena are numerically and analyticallystudied. The use of the SNOM allowed us here to check the validity of our models. Besides,we have directly observed thanks to this instrument the guiding and confinement of light ina low refractive index media. However, we show that this phenomenon is highly subjected tofabrication uncertainties. Finally, we use the SNOM and spectral measurements in order todemonstrate that systems of N coupled nanocavities could be described with a simple coupledmodes model.
|
Page generated in 0.0727 seconds