• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanopore-Based Metagenomic Comparison of Airway Colonizers Between Cystic Fibrosis Patients and Healthy Individuals

Samadabadi, Anita 01 January 2020 (has links)
Cystic fibrosis (CF) is an autosomal recessive genetic disorder involving a mutation in the CF transmembrane conductance regulator protein (CFTR), which causes dysfunctional transport of chloride ions across cell membranes. CF affects multiple body systems and a few of its symptoms include chronic cough, difficulty breathing, obstructive airway disease, bacterial pulmonary infections, maldigestion, malabsorption, pancreatitis, and male infertility. Until recently, treatment options have been limited to alleviating symptoms, but a new classification of drugs, CFTR modulators, provide an opportunity to slow the progression of the disease and improve clinical outcomes. The effect of CFTR modulators may be attributed to the reduction of persistently colonizing bacteria in CF lungs. Though, the effects of modulators on microbial communities colonizing the CF lung remains unknown, specifically with common respiratory pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Particularly, previous CF studies have been limited in scope due to focusing on only one type of modulator and by using low-yield sequencing techniques. To address this gap, we seek to study the changes in CF respiratory pathogens of patients initiating CFTR modulator therapy at Nemours Hospital using long-read metagenomic sequencing (Oxford Nanopore) of longitudinally collected respiratory samples. We have optimized a protocol for host DNA depletion and microbial metagenomic sequencing to characterize the respiratory microbiome. This study focuses on utilizing these sequencing data to compare the microbiome among two healthy controls to pre-CFTR-treatment microbial communities of two recruited pediatric CF patients.

Page generated in 0.0265 seconds