Spelling suggestions: "subject:"nanoscale characterization"" "subject:"nanoscaled characterization""
1 |
Nanoscale electronic and thermal transport properties in III-V/RE-V nanostructuresPark, Keun Woo 18 February 2014 (has links)
The incorporation of rare earth-V (RE-V) semimetallic nanoparticles embedded in III-V compound semiconductors is of great interest for applications in solid-state devices including multijunction tandem solar cells, thermoelectric devices, and fast photoconductors for terahertz radiation sources and receivers. With regard to those nanoparticle roles in device applications and material itself, electrical and thermal properties of embedded RE-V nanoparticles, including nanoscale morphology, electronic structure, and electrical and thermal conductivity of such nanoparticles are essential to be understood to engineer their properties to optimize their influence on device performance. To understand embedded RE-V semimetallic nanostructures in III-V compound semiconductors, nanoscale characterization tools are essential for analysis their properties incorporated in compound semiconductors. In this dissertation, we used atomic force microscopy (AFM) with other secondary detection tools to investigate nanoscale material properties of semimetallic RE-V and GaAs heterostructures, grown by molecular beam epitaxy. We used scanning capacitance microscopy and conductive AFM techniques to understand electronic and electrical properties of ErAs/GaAs heterostructures. For the electrical properties, this thesis investigates details of statistical analysis of scanning capacitance and local conductivity images contrast to provide insights into (i) nanoparticle structure at length scales smaller than the nominal spatial resolution of the scanned probe measurement, and (ii) both lateral and vertical nanoparticle morphology at nanometer to atomic length scales, and their influence on electrical conductivity. To understand thermal properties of ErAs nanoparticles, in-plane and cross-sectional plane of ErAs/GaAs superlattice structure were investigated with a scanning probe microscopy technique implemented with 3[omega] method for thermal measurement. By performing detailed numerical modeling of thermal transport between thermal probe tip and employed samples, and estimation of additional phonon scattering induced by ErAs nanoparticles, we could understand influences of ErAs nanoparticles on the host GaAs thermal conductivity. Investigation of ErAs semimetallic nanostructure embedded in GaAs matrix with scanned probe microscopy provided detailed understanding of their electronic, electrical and thermal properties. In addition, this dissertation also demonstrates that an atomic force microscope with secondary detection techniques is promising apparatus to understand and investigate intrinsic properties of nanostructure materials, nanoscale charge transports, when the system is combined with detailed modeling and simulations. / text
|
2 |
COMPUTATIONAL AND EXPERIMENTAL STUDIES OF ATOMIC FORCE MICROSCOPY ON VISCOELASTIC POLYMERS WITH SURFACE FORCESBahram Rajabifar (10000826) 19 January 2021 (has links)
Atomic force microscopy (AFM) is widely used to study material properties and domain heterogeneity of polymers. In both quasi-static force spectroscopy and dynamic AFM, challenging complexities such as the presence of different effective tip-surface forces, surface dynamics, and material viscoelasticity can occur on polymer samples. Many models that attempt to link experimental observables to contact mechanics fail to rigorously account for these complexities. This may lead to inaccurate and unreliable predictions, especially when examining soft polymers. Therefore, having access to rigorous models that can facilitate the understanding of the underlying phenomena during tip-surface interaction, explain the observations, and make reliable and accurate predictions, is of great interest. Among the previously developed models, Attard et al. proposed a novel non-Hertzian-based model that has a versatile ability to systematically incorporate different linear viscoelasticity constitutive models and surface adhesive forces. However, the implementation of Attard’s model into the AFM framework is challenging.<div><br></div><div>In a series of studies, we improve the computational speed and stability of Attard’s viscoelastic contact model and embed it into an AFM framework by proposing algorithms for three AFM operational modes: tapping mode, bimodal, and peak force tapping. For each mode, the results are successfully verified/validated against other reliable AFM codes, FEM simulations, and experiments. The algorithms’ predictions illustrate how viscoelasticity and surface adhesive hysteresis of polymeric samples is reflected in AFM observables. However, since Attard’s model does not lead to a closed-form solution for tip-surface interaction force, using that to quantify the surface mechanical properties based on the AFM observables is not straightforward. Therefore, we utilize the data analytics-based approaches such as linear regression and machine learning algorithms to enable the material viscoelasticity and adhesive parameters estimation based on the provided instrument observables.<br></div><div><br></div><div>The set of results reported in this thesis improves the current knowledge about complex phenomena that occur during tip-surface interactions, especially on soft-viscoelastic-adhesive polymers. The introduced “improved Attard’s model” fulfills the need for a continuum mechanics viscoelasticity contact model that rigorously captures the complexities of such samples. The viscoelasticity contact model and the proposed inverse solution algorithms in this thesis facilitate quantitative measurement and discrimination of the surface adhesive and viscoelastic properties based on the acquired nanoscale AFM maps of polymeric samples.<br></div>
|
3 |
Theoretical and Experimental Investigations on Microelectrodeposition ProcessHaghdoost, Atieh 09 September 2013 (has links)
Electrodeposition is one of the main techniques for fabricating conductive parts with one or two dimensions in the micron size range. This technique is utilized to coat surfaces with protective films of several micrometers thickness or fabricate standalone microstructures. In this process, an electrochemical reaction occurs on the electrode surface by applying an electric voltage, called overpotential. Different electrochemical practices were presented in the literature to obtain kinetic parameters of an electrochemical reaction but most of these practices are hard to implement for the reactions occur on a microelectrode. Toward addressing this issue, the first part of the dissertation work presents a combined experimental and analytical method which can more appropriately provides for the kinetic measurement on a microelectrode.
Another issue which occurs for electrodeposition on microscale recessed areas is the deviation of the profile of the deposition front from the substrate shape. Non-uniform deposition front usually obtains for a deposit evolved from a flat substrate with microscale size. Consequently, a subsequent precision grinding process is required to level the surface of the electrodeposited microparts. In order to remove the need for this subsequent process, in the second and third parts of the dissertation work, multiphysics modeling was used to study the effects of the fabrication parameters on the uniformity of the deposit surface and suggest a design strategy.
Surface texture of the deposit is another parameter which depends on the fabrication parameters. Several important characteristics of the electrodeposited coating including its wettability depend on the surface texture. The next part of the dissertation work presents an experimental investigation and a theoretical explanation for the effects of the overpotential and bath concentration on the surface texture of the copper deposit. As a result of this investigation, a novel two-step electrodeposition technique is developed to fabricate a superhydrophobic copper coating.
In the last part of the dissertation work, similar investigation to the previous sections was presented for the effects of the fabrication parameters on the crystalline structure of the deposit. This investigation shows that nanocrystalline and superplastic materials can be fabricated by electrodeposition if appropriate fabrication parameters are applied. / Ph. D.
|
Page generated in 0.159 seconds