Spelling suggestions: "subject:"nanoscience"" "subject:"nanosciences""
201 |
An Assessment Of Nanoscience And Nanotechnology (NST) Initiatives In IndiaWatve, Neelima S 05 1900 (has links) (PDF)
Technology is the ‘engine of economic growth’ and technological progress is the most important factor driving a nation’s sustained economic growth. New technologies assume significant and long term role in this process of economic development. New technologies can trigger new cycles of economy, provide windows of opportunity for less developed countries to catch up with the more advanced nations and are important from the wealth creation point of view. However for this to happen, the technology should be able to reach society in the form of new products, processes.
Nanotechnology is a new and emerging technology that can play important role to promote India’s economic development. Wide ranges of applications are claimed for nanotechnology and it is considered to be the next big wave of technology after information technology and biotechnology. Government of India has started a mission on nanoscience and nanotechnology in May 2007 with an allocation of ~ 200 million USD for 5 years. However, if one looks at the ‘Nanotechnology’ from the wealth creation point of view, then, research efforts alone in this field, are not sufficient. The research efforts should lead to new products, new processes, and new platforms. Management of technology can assume significant role in this process.
It is generally agreed upon that management of nanotechnology is necessary to create economic advantage at the national level. However, the macro level understandings namely, policy at the national level, must result in ground level organization performance. In order to facilitate innovation in the field of NST (Nanoscience and Technology), the process of innovation in this field must be well understood. Infrastructure and management of R&D is a key aspect and entrepreneurship is vital for the development of a new technology. The aim of this study is to do the assessment of nanoscience and nanotechnology initiatives in India.
Emerging technology assessments for nation building to meet societal objectives is an extremely complex task. Challenge lies in understanding complex R&D requirements and likely innovations at the lab level. Further challenge lies in assessing initiatives of the start-ups, individual entrepreneurs and comparing them with the Government research initiatives. Understanding the resource requirements of different research initiatives in the field of nanoscience and nanotechnology (NST) will greatly assist in facilitating innovation in this field. Further understanding of human, cultural issues, education and training aspects, technical and market uncertainties faced by nanoscience and nanotechnology research initiatives will be an added advantage for the policy makers to facilitate innovation in the field of nanoscience and nanotechnology (NST).
Review of Literature
A critical literature review in the field of Technology Management; Innovation, Technological Innovation; and nanoscience and nanotechnology from a business perspective gave researcher a strong foundation to define nanotechnological innovation and understand the process of nanotechnological innovation. This literature along with the literature on the emergence of a new industry helped identify factors that would facilitate innovation in the field of nanoscience and nanotechnology.
While understanding importance of management in developing nanotechnology to realize its benefits, no study has attempted to link the management processes with the innovation output in the field of nanoscience and nanotechnology. Also, there are very few empirical studies in this area. Thus need to empirically determine various management processes that can facilitate innovation in the field of nanoscience and nanotechnology and their causal relatedness to output measures of innovation in the field of nanoscience and nanotechnology is identified as a research gap.
Aims, Objectives
This study aims at conceptualizing the challenges of developing appropriate framework for assessment of emerging technologies in a particular domain. It further aims to use this framework for assessing nanoscience and nanotechnology initiatives in India and to come up with set of alternatives for policy makers at the national level.
The objectives are
1. To develop a framework for the assessment of a new technology initiative with a view to enable innovation in the field of nanoscience and nanotechnology. This further gave rise to two objectives viz,
a. Measure the innovation in the field of nanoscience and nanotechnology.
b. Identify factors that enable innovation in the field of nanoscience and nanotechnology.
1 To use developed framework to assess nanoscience and nanotechnology initiatives in India.
2 To make suggestions for effective institution building and develop interventions for efficient management of nanoscience and technology research and development initiatives.
Conceptual Model
The conceptual model links two major aspects viz., output of innovation and factors facilitating innovation in the field of nanoscience and nanotechnology (NST). This model is used as a tool to assess nanoscience and nanotechnology initiatives in India.
Output of innovation is measured at three levels, namely, Focused NST initiative -an initiative where with clear goals, deliverables and resources work on NST project has started. Newness of NST initiative -which measures generation of new products, new processes in the field of NST and Dissemination of NST initiative -which measures publications and patents in the field of NST. Factors facilitating innovation include Organization context, presence of Basic resources, Leadership, Strategic research partnerships, Link with venture capitalists, Technology characteristics and Innovation culture. These factors were thought to be positively linked with the output of innovation in the field of nanoscience and nanotechnology.
Methodology
Based on a critical literature review, a preliminary study entailing in-depth interviews with strategy experts and a pilot study, a structured questionnaire was developed, to measure constructs and variables in the conceptual model. The main study consisted of data collected from 112 researchers from private as well as public organizations engaged in nanoscience and nanotechnology research and development.
Results and Discussion
The first part of the analysis began with factor analysis. Based on the factor loadings 31 factors were obtained. These factors were considered to be facilitating innovation in the field of nanoscience and nanotechnology. Similarly output of innovation in the field of NST got loaded onto 3 factors, namely Focused NST initiative, Newness of NST initiative and Dissemination of NST initiative. Non-Hierarchical K-means (K = 2) cluster analysis resulted in two useful clusters among respondents; Cluster 1 primarily represented academic institutes whereas, Cluster 2 mainly represented private sector start-ups in the field of nanoscience and nanotechnology.
Factors facilitating innovation and output of innovation were compared across two clusters of the organizations. The student’s t-test was used to compare means of factor scores and items under it across two clusters. Based on the statistical significance of the difference between the factor scores across two clusters, conclusions were drawn as to whether the presence of factors facilitating innovation and output of innovation differ across academic institutes and private sector start-up firms.
Significant differences were obtained between the two clusters of organizations with respect to availability of finance, technical and industrial experience of the leadership, strategic research partnerships, market uncertainty and link with the venture capitalists. Output of innovation also differed across two types of organizations, wherein, academic institutes were more active in producing “dissemination” output of innovation and private start-up firms are more active in producing “newness” output of innovation.
The next stage of analysis dealt with finding out what among these factors actually contribute to innovation in the field of nanoscience and nanotechnology. Multiple linear regression technique was used to for this purpose. Thus, for three levels of innovation output, three regression models are obtained. Industrial experience of the leaders, Finance, Market readiness of the products are some of the factors facilitating ‘Newness’ output of innovation, whereas, Academic experience and Link with the technical communities are some of the factors affecting Dissemination of NST Initiative.
The next stage of analysis dealt with simultaneous estimation of dependent variables. Structural equation modeling in the form of path analysis (AMOS software from SPSS) was used for this purpose. This also helped in explaining how different variables (dependent as well as independent) are related to each other. At an aggregate level, causal model could be fitted between factors facilitating innovation and output of innovation in the field of nanoscience and technology. Chi-square, Normed Fit Index (NFI) and Root mean square error analysis (RMSEA) were the measures used to accept the model. Path analysis also helped to find significant covariances among the independent variables.
Concomitant with the quantitative approach of data analysis, qualitative approach using case study was also used to assess nanoscience and nanotechnology initiatives in India. Case study was conducted in two different types of organizations; a premier academic institution and a private start-up firm. Case study revealed that private sector organizations indeed struggle to raise finance. However, high entrepreneurial attitude motivates these young engineers. In case of academic institutions it was noted that in an academic environment there is no real motivation for commercialization or taking research to the market. Performance and rewards for faculty depend to a large extent on publications and to a very small extent on patents. Culture of industrial R&D is not very strong in India and not many companies are willing to experiment.
Major conclusions of the study
Major conclusions of the study pointed out differences between academic institutes and private start-up firms with respect to availability of the resources, leadership of the people, strategic research partnerships. It also pointed out differences in the types of output of innovation produced by these two firms. Causal analysis in the form of regression and path analysis pointed out factors actually contributing to innovation in the field of nanoscience and nanotechnology. Case study analyzed qualitatively challenges faced by researchers from academic institutes and private start-up firms.
Major Suggestions to organizations
From the data analyzed in the study, it can be seen that private sector firms in India are facing the problem of raising finance as compared with academic institutions. Similarly, analysis of the data shows, significantly less Industry – Government interactions as compared with Academic institutions – Government interactions. Understanding the importance of private industries in developing applications of new technologies, Government needs to come out with appropriate practices to build a good “ecosystem” for nanotechnology innovation.
At the national level, efforts are undertaken by the Government to increase and encourage research initiatives in the field of nanoscience and nanotechnology. Substantial investment can be made in developing technology managers and also build technology entrepreneurs who would commercialize the products and build new products from the new technology. Thus, formation of start-up firms can be encouraged. This will absorb the manpower trained by academic research institutes and will enhance technical and market experience among researchers which was noted as a important factor for enhancing ‘newness’ output of innovation.
Detailed analysis of various programs initiated by Government of India does show presence of various mechanisms to promote private sector initiatives in field of nanoscience and nanotechnology. However, present study shows that the private sector is finding it difficult to raise finance through various Government schemes.
Academic sector is the major beneficiary of Government funding however, the research results stop at publications in these organizations. Private sector is able to bring new products, new processes, however, struggles to raise finance. Thus private sector start-ups could be funded with Government funding mechanisms. These mechanisms can be made less cumbersome for the start-up firms. Academic sector on the other hand should be encouraged by way of incentives for generation of new products. Considering importance of strategic research partnerships, institutional mechanisms could be put into place which will enhance Government – Industry and Industry-Academia research interaction.
Contribution of the study
The main contribution of this study includes, a conceptual model involving resource based view of innovation. The conceptual model is further used for measuring output of innovation in the field of nanoscience and nanotechnology (NST) at three levels, namely newness of NST initiative, dissemination of NST initiative and having a focused NST research initiative. Factors which may promote and facilitate innovation in the field of nanoscience and nanotechnology (NST) are also measured. Comparison is made across different types of organizations to see availability of these enabling factors in Indian nanoscience and nanotechnology initiatives. Using regression analysis and path analysis, factors which actually contribute to innovation in the field of NST are identified.
The main implication of the study is towards a better policy formulation in strengthening human resources, organizational capability, increasing funding for research and enhancing academic – industry interaction for better innovative performance.
Limitations of the study
The present study does not include all the types of organizations in the technology environment, this includes, namely nanoscience and nanotechnology R&D initiatives in large sized organizations and Government research organizations like Defense research and Development Organization (DRDO), Indian Space research Organization (ISRO). These organizations were contacted for data collection for this study, however they denied permission.
Directions for future research
Present study involved cross section of researchers engaged in the field of nanoscience and nanotechnology. Future studies can be longitudinal that can track changes in leadership, organizational structure and organizational processes. This study provides a conceptual model that can be used for the assessment of other new technologies in India
e.g. defence or manufacturing related technologies.
|
202 |
Engineering surface functionality of gold nanoparticles for therapeutic applicationsKim, Chaekyu 01 January 2011 (has links)
Over the past few decades, tremendous efforts have been made to develop nanomaterials for biotechnological applications such as therapeutics. Understanding and engineering interfaces between biomacromolecules and nanomaterials is a key to the creation of successful therapeutic systems. My research has been oriented toward developing therapeutic systems using gold nanoparticles (AuNPs) incorporating material science, organic synthesis, and biology. For this purpose, mixed monolayer protected AuNPs (∼2 nm core size) with various functional groups have been employed for triggering therapeutic effects. Several strategies have been accomplished using anticancer drugs that non-covalently and covalently incorporate onto AuNPs as a drug delivery carrier. Alternatively, AuNPs were developed by regulating host-guest complexation processes inside the cell, allowing control of the therapeutic effect of the AuNP. In addition, by using host-guest chemical events on the AuNPs, exocytosis of the AuNPs was controlled, enabling their prolonged retention inside of the cells, providing new strategies for improving conventional drug delivery systems. Therefore, engineering of the AuNP surface can afford new pathways for designing and improving therapeutics.
|
203 |
Discriminatory bio-adhesion over nano-patterned polymer brushesGon, Saugata 01 January 2013 (has links)
Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the analyte solution, along with the competition between attractions and repulsions between various species in the suspension and different parts of the collecting surface. The resulting binding selectivity can be exquisitely sharp; however, complex mixtures generally require the use of multiple surfaces to isolate the various species: Different components will be adhered, sharply, with changes in collector composition. The key feature of these surface designs is their lack of reliance on biomolecular fragments for specificity, focusing entirely on physicochemical principles at the lengthscales from 1 - 100 nm. This, along with a lack of formal patterning, provides the advantages of simplicity and cost effectiveness. This PhD thesis demonstrates these principles using a system in which cationic poly-L-lysine (PLL) patches (10 nm) are deposited randomly on a silica substrate and the remaining surface is passivated with a bio-compatible PEG brush. TIRF microscopy revealed that the patches were randomly arranged, not clustered. By precisely controlling the number of patches per unit area, the interfaces provide sharp selectivity for adhesion of proteins and bacterial cells. For instance, it was found that a critical density of patches (on the order of 1000/μm 2) was required for fibrinogen adsorption while a greater density comprised the adhesion threshold for albumin. Surface compositions between these two thresholds discriminated binding of the two proteins. The binding behavior of the two proteins from a mixture was well anticipated by the single- protein binding behaviors of the individual proteins. The mechanism for protein capture was shown to be multivalent: protein adhesion always occurred for averages spacings of the adhesive patches smaller than the dimensions of the protein of interest. For some backfill brush architectures, the spacing between the patches at the threshold for protein capture clearly corresponded to the major dimension of the target protein. For more dense PEG brush backfills however, larger adhesion thresholds were observed, corresponding to greater numbers of patches involved with the adhesion of each protein molecule. . The thesis demonstrates the tuning of the position of the adhesion thresholds, using fibrinogen as a model protein, using variations in brush properties and ionic strength. The directions of the trends indicate that the brushes do indeed exert steric repulsions toward the proteins while the attractions are electrostatic in nature. The surfaces also demonstrated sharp adhesion thresholds for S. Aureus bacteria, at smaller concentrations of adhesive surfaces elements than those needed for the protein capture. The results suggest that bacteria may be captured while proteins are rejected from these surfaces, and there may be potential to discriminate different bacterial types. Such discrimination from protein-containing bacterial suspensions was investigated briefly in this thesis using S. Aureus and fibrinogen as a model mixture. However, due to binding of fibrinogen to the bacterial surface, the separation did not succeed. It is still expected, however, that these surfaces could be used to selectively capture bacteria in the presence of non-interacting proteins. The interaction of these brushes with two different cationic species PLL and lysozyme were studied. The thesis documents rapid and complete brush displacement by PLL, highlighting a major limitation of using such brushes in some applications. Also unanticipated, lysozyme, a small cationic protein, was found to adhere to the brushes in increasing amounts with the PEG content of the brush. This finding contradicts current understanding of protein-brush interactions that suggests increases in interfacial PEG content increase biocompatibility.
|
204 |
Manipulating block copolymer self-assemblies in bulk and thin films by thermal and solvent annealingGu, Weiyin 01 January 2013 (has links)
The self–assembly of block copolymers (BCPs) into well–ordered nanoscopic arrays holds promise for new technological breakthroughs as templates and scaffolds for the fabrication of nanostructured materials. It is essential to establish convenient approaches to control the morphology of BCPs, since some applications require addressability, the BCP microdomains must be perfectly aligned and oriented. The theme of this thesis is the use of external forces, specifically thermal and solvent annealing, to guide the self–assembly of BCPs to obtain microphase separated morphologies for different applications. Three representative BCP systems, having lamellar, cylindrical and spherical microdomains are discussed. First, the self–assembly of lamella–forming brush block copolymers (BrBCPs) having polylactide (PLA) and polystyrene (PS) side chains were studied in the bulk and in thin films. The domain size increased approximately linearly with the molecular weight of the backbone, which indicated that the backbone was in an extended conformation that was confirmed theoretically. In situ small angle x–ray scattering (SAXS) measurements indicated that the self–assembly of the BrBCPs was quite rapid, due to the rigid nature of the backbone chain, Second, the directed self–assembly of cylinder–forming polystyrene–block–poly(ethylene oxide)s (PS–b–PEOs) in thin films were investigated. The polymer–surface interactions were tuned by hydroxyl end–functionalized polymers, so that the orientation of the PS–b–PEO microdomains was controlled during thermal annealing. Cylindrical PEO microdomains embedded in a PS matrix orientated normal to the silicon substrates were observed over a wide processing window when the substrates were modified by PS– b–PEO BCPs. PS–b–PEOs with an o–nitrobenzyl ester junction point (PS–hν –PEOs) were used to fabricate nanoscopic dot and line patterns having long–range lateral order. The cylindrical BCP microdomains were oriented perpendicular or parallel to the silicon substrates by varying the solvent annealing conditions. The third BCP system examined in this study was a sphere–forming polystyrene–block–polydimethylsiloxane (PS–b–PDMS). Solvent annealing in N–methyl–2–pyrrolidone was used to direct the self–assembly of the spherical microdomains into high areal density arrays on flat Si substrates, PS modified substrates and lithographically patterned substrates, respectively.
|
205 |
Improved optical and electrical properties of MoSe₂ and WSe₂ via reduction of point defectsKim, Bumho January 2021 (has links)
Transition metal dichalcogenides (TMDs) have displayed a host of novel physical phenomena, which opens-up promising future applications in electronics, optoelectronics, spintronics and valleytronics. However, the high defect density of 10¹² - 10¹³ cm-² in commercially available TMDs may hinder the observation of their intrinsic properties. In this thesis, the defect density of MoSe₂ and WSe₂ has been reduced by ~10x - 1000x using flux method. The reduced defect denstiy of MoSe₂ and WSe₂ enables to observe optical and electrical properties approaching their intrinsic properties.First of all, photocurrent measurements on the ultra-clean WSe₂ unveil the effect of point defects on photo-response. Substantial improvement of AC photocurrent in the ultra-clean WSe2 indicates that free carriers are likely to non-radiatively decay at atomic defects at room temperature.
Then, time-resolved photoluminescence measurements on the ultra-clean MoSe₂ samples allow for direct determination of both the intrinsic (radiative) and defect-dependent (non-radiative) lifetimes of trions. In the cleanest MoSe₂, the trion quantum yield approaches unity. The long lifetime of 230 ps of trions allows direct observation of their diffusion, conclusively demonstrating that trions are free particles. Both the long radiative and non-radiative lifetime of trions can be attributed to Pauli blocking effects.
Morover, transport measurements of ultra-clean WSe2 provide Hall mobility exceeding 10,000 cm²V-¹s-¹ and long mean free path over 200 nm, which are nearly three times higher than those in previous study. This improved mobility and mean free path in the ultra-clean WSe₂ indicate that the electrical properties have been limited by defect scattering.
Finally, WSe₂ has been a decent platform to generate single photon emitters. However, the microscopic origin of the single photon emitter has been debated. From power- and gate-dependent photoluminescence of ultra-clean WSe₂, emerging defect bound excitons are observed, which is likely formed from the interaction between donor defects and excitons.
|
206 |
Organic nanoparticles for photovoltaic and sensing applicationsVenkatraman, B. Harihara 01 January 2011 (has links)
Can organic semiconducting nanoparticles be used as building blocks for fabricating electronic devices? The first half of this dissertation focuses on addressing this question and the associated research challenges for attaining morphological control pertaining to organic photovoltaic devices by nanoparticle assembly. Conjugated polymer nanoparticles were synthesized using miniemulsion technique and their optical, charge transfer and charge transport properties were studied. Some degree of control in polymer chain packing within the nanoparticle was also demonstrated. The optical, charge transfer and charge transport properties of these nanoparticles were found to be similar to that of parent conjugated polymer irrespective of the surface charge. From the initial photovoltaic measurements, it is shown that these nanoparticles are potential candidates for fabricating future photovoltaic devices. The second half of this dissertation is focused on developing a novel and viable strategy for sensing aqueous based nitroaromatic compounds. Nitroaromatic compounds are commonly used as explosives and possess serious health hazards. Thiophene-based conjugated polymer nanoparticles were synthesized and were shown to effectively detect aqueous based nitroaromatic explosives.
|
207 |
Catalytic and Electronic Activity of Transition Metal Dichalcogenides HeterostructuresLi, Baichang January 2021 (has links)
The synthesis of transition metal dichalcogenides (TMDs) are crucial to realization of their real-world applications in electronic, optoelectronic and chemical devices. However, the fabrication yield in terms of material quality, crystal size, defect density are poorly controlled. In this work, by employing the up-to-date stack-and-transfer and nano fabrication techniques, synthetic TMDs that obtained from different growth methods with various crystal qualities were studied.
In most of the cases, better crystals with lower defect densities and larger crystal domain sizes are preferred. Self-flux method was developed to obtain better quality crystals comparing to the traditional chemical vapor transport, as characterized by lower defect densities. BN encapsulating graphene device platform was utilized and TMDs monolayers with different defect densities was inserted in between the BN/graphene interface, where intrinsic defects from the TMDs disturbed the electronic environment of graphene. With the better TMD crystal insertion, we obtain much better electrical performed device in terms of hysteresis, FWHM of Dirac peak and electron mobility. This device also showed advantage in quantum transport measurements
.
On the other hand, the presence of defects are not always undesired, especially when it comes to serve as electrocatalysts, in which most of the reactions take place at vacancy sites. However, similar to most of the MoS2 electronic devices, forming barrier-free metal semiconductor contact is the major challenge. We develop a platform that contact resistance could be monitored simultaneously with electrochemical activity. In this platform, the total device resistance is significantly reduced before electrochemical reaction happens while the intrinsic catalytic activity of the MoS₂ can be extracted. With this platform, we found the intrinsic catalytic activity of MoS₂ strongly correlated to H-coverage on its surface. By adding molecular mediator into electrolytes, H-coverage and the resulting HER activity was enhanced via “Catch and Release” mechanism. Molecular simulation was performed to support our experimental results.
|
208 |
Flexible routing of information for decision makingOdean, Naomi N. January 2020 (has links)
Behaving in a complex world requires flexible mapping between sensory inputs and motor outputs. One must be able to make decisions about what actions to take based on a wide variety of inputs. This presents a routing problem: brain areas involved in decision making must receive information encoded by different sensory neurons in different situations. In this thesis I investigate this routing problem using two variations of the random dot motion task which require flexible routing. In the first, a single random dot motion task appears in different locations on different trials. Recording from the lateral intraparietal area (LIP) revealed several neural features which varied with stimulus location. A second task made it possible to disentangle routing from other signals, by separating the time of routing from the onset of motion and decision making. In this second task, a visual cue indicated the location at which relevant motion would appear. After the cue was extinguished, two random dot motion patches appeared. An informative patch appeared at the cued location, and an uninformative patch appeared at another location. Comparison of these two tasks revealed three location dependent signals at motion onset: a visual signal related to surround suppression, a second suppressive signal that may set the amount of evidence required for decision making, and a 12-20 hertz oscillation in firing rate. This oscillation appears to be a signature of flexible information routing. It appears at motion onset when the motion stimulus varies in location unpredictably; it appears at cue onset when a spatial cue indicates the location information must be routed from; and it does not appear when stimulus location is fixed and flexible routing is not required. Future work on this project will eventually require tools which are not well developed for use in rhesus macaques. The final chapter describes two projects which attempt to address this problem, one through the use of optogenetics in monkeys and the other by adapting an established monkey behavioral task for use in mice.
|
209 |
Theory and Applications of Surface Energy Transfer for 2-20 Nm Diameter Metal NanoparticlesUnknown Date (has links)
The development and experimental validation of a mathematical model for nanoparticle–based surface energy transfer (SET) between gold nanoparticles and fluorescent dye labels, has enabled biophysical studies of nucleic acid structure and function previously inaccessible by other methods. The main advantages of SET for optical distance measurements are that it can operate over longer distances than other similar methods, such as Forster Resonance Energy Transfer (FRET), thus enabling measurements across biological structures much larger than otherwise possible. This work discusses the fundamental theory for the SET interaction and expansion of SET theory to account for multiple interacting dye labels and demonstrated on DNA and RNA in order to allow 3D triangulation of labeled structures. SET theory has also been expanded to core@shell structures which represent a new class of designer SET platforms with dramatically increased spectral windows; allowing for a multitude of dye labels to be used simultaneously over a broad range of wavelengths. Additionally, these designer nanostructures can incorporate the material properties of the core. So that , for example Ni@Au, can provide a SET measurement platform coupled with a magnetic moment for sample purification and manipulation. These efforts to develop and establish optical SET methods lays a foundation of a powerful methodology for biophysical characterization, and allows researchers to study biological structures previously too large or complex to be easily studied, such as the unknown tertiary structures of large RNA elements. / A Dissertation submitted to the Institute of Molecular Biophysics in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Summer Semester 2016. / June 28, 2016. / DNA, Energy Transfer, Nanoparticles, Optical Ruler, RNA / Includes bibliographical references. / Geoffrey F. Strouse, Professor Directing Dissertation; Richard L. Hyson, University Representative; Piotr G. Fajer, Committee Member; M. Elizabeth Stroupe, Committee Member; Hank W. Bass, Committee Member.
|
210 |
Aggregative Growth of Colloidal Semiconducting Nanocrystals for Nanoshell Quantum Dots and Quantum Dot MoleculesCassidy, James 13 May 2022 (has links)
No description available.
|
Page generated in 0.0472 seconds