Spelling suggestions: "subject:"nanostructures photonique"" "subject:"nasnostructures photonique""
1 |
Étude et réalisation de nanostructures photoniques à base de silicium poreux chimiquement fonctionnalisé en vue d'une application biocapteurDribek, Mohamed 10 December 2010 (has links) (PDF)
Dans l'objectif de développer une nouvelle activité dans le domaine des biocapteurs, nous avons mené les travaux de cette thèse qui portent sur la conception et la réalisation de nanostructures photoniques à bas de silicium poreux fonctionnalisé pour la détection du glucagon. Affin d'exploiter une transduction optique liée aux propriétés intrinsèques du silicium poreux et une bioréception immunologiqe basée sur l'affinité entre le glucagon et les anticorps monoclonaux spécifiques (Ac. Anti‐glucagon de type IgG1), nous avons réalisé une étude sur les conditions expérimentales d'élaboration de silicium poreux pour la mise en oeuvre d'un prtocole chimique permettant sa biofonctionnalisation. Nous avons aussi mis en place les outils nécessaires pour le suivi des étapes de fonctionnalisation de silicium poreux et préaré des structures photoniques multicouches fonctionnalisées. En effet, après avoir effectué une étude bibliographique sur les biocapteurs en général et les dispositifs optiques en particulier, nous avons opté pour une approche fondée sur l'utilisation d'une microcavité à miroir de Bragg dont la longueur d'onde de résoance est déplacée par la modification de son indice de réfraction due à la présence de l'espèce biologique à détecter. Pour cela nous avons tout d'abord développé un programme de simulation de spectres de réflectances de structures optiques à bae de silicium poreux. Ce programme calcule la réflectance d'une structure poreuse monocouche ou multicouche en appliquant le formalisme des matricesde transfert et ce à partir des indices de réfraction calculés à partir de la composition des milieux effectifs constitués par e silicium poreux (dont la porosité est modulée) remplis par l'espèce biologique étudiée. Cet outil nous a permis dans un premier temps de prévoir l'influence des paramètres structuraux, tels que le diamètre moyen des pores et la porosité, sur la sensibilité de la réponse spectrale de structures monocouches et multicouches (miroir de Bragg et microcavité) dans le suivi de la biofonctionnalisation de ces structures. Dans un deuxième temps, nous avons simulé la réflectance des monocouches de silicium poreux que nous avons élaborées par anodisation électrochimique ain de déterminer leur porosité. La caractérisation structurale de ces monocouches a été complétée par des observations au microscope électronique à balayage (MEB). La fonctionnalisation de ces couches de silicium poreux selon un procédé chimique comportant une étape de silanisation suivie ar une réaction de couplage aldéhyde et le greffage d'éléments immunologiques (anticorps‐antiglucagon) a été contrôlée par réflectométrie et spectroscopie RAMAN. Nous avons ainsi pu d'une part, vérifier la fixation des anticorps anti‐glucagon en volume d'une couche de silicium poreux de forte porosité (~ 90%) et d'autre part estimer le taux de recouvrement de la surface poreuse par ces biorécépteurs (0.4x1012 molécules d'IgG par cm²). Nous avons par la suite appliqué ce procédé de biofonctionnalisation aux microcavités conçue auparavant ce qui nous ont perms de confirmer dans certaines conditions l'efficacité du protocole chimique utilisé pour recouvrir la surface interne du matériu par des molécules organiques.
|
2 |
Spectroscopie cohérente non-linéaire de boîtes quantiques uniques dans des nanostructures photoniques / Nonlinear coherent spectroscopy of single quantum dots in photonic nanostructuresMermillod-Anselme, Quentin 18 May 2016 (has links)
La décohérence dans les solides est un problème majeur vers la réalisation d'un processeur quantique basé sur l'utilisation de boîtes quantiques (BQs) semiconductrices comme qubits optiquement actifs. Mesurer et contrôler la cohérence optique de tels qubits s'avère donc primordial, tant d'un point de vue technologique que fondamental. Cependant, leurs tailles nanométriques, associées aux temps de vie sub-nanosecondes de leurs transitions optiques, rendent les mesures expérimentales très délicates.Ce travail de thèse propose une étude détaillée des mécanismes de déphasage et de couplage cohérent de complexes excitoniques fortement confinés dans des BQs InAs/GaAs individuelles. Pour réaliser ces mesures, j'ai développé une expérience de mélange à quatre ondes hétérodyne sensible à l'amplitude et à la phase du champ électrique émis par une BQ unique. Ce dispositif permet de mesurer le temps de vie et de cohérence d'un exciton unique, même en présence d'élargissement inhomogène. Pour augmenter l'interaction lumière-matière et l'efficacité d'extraction du signal, l'utilisation de nanostructures photoniques s'est avérée indispensable. La sensibilité optique du dispositif m'a permis d'étudier en détail les mécanismes d'interaction exciton-phonon, source importante de décohérence dans les solides, comme la formation du polaron acoustique, le couplage quadratique aux phonons acoustiques, et le déphasage induit pendant l'excitation. Par ailleurs, la réalisation de spectres bidimensionnels m'a permis de révéler le couplage cohérent entre différentes transitions excitoniques. Enfin, je présente un nouveau protocole de mélange multi-ondes permettant de contrôler la réponse cohérente d'un exciton unique que je propose d'appliquer sur une paire de BQs pour contrôler le couplage radiatif longue distance, étape fondamentale vers la réalisation d'une porte logique quantique dans les solides. / Decoherence in solids is a major issue towards the realization of a quantum processor based on semiconductor quantum dots (QDs) as optically active qubits. Measuring and controlling the optical coherence of such qubits is required in their fundamental studies, paving a way for technological applications. However, their nanometer size combined to the sub-nanosecond lifetime of their optical transitions, render experimental measurements very challenging.This thesis presents a detailed study of the dephasing mechanisms and the coherent coupling of excitonic complexes strongly confined in individual InAs/GaAs QDs. To achieve these measurements, I developed an heterodyne four-wave mixing experiment sensitive to the amplitude and phase of the electric field emitted by a single QD. With this setup one can measure the lifetime and the coherence time of a single exciton, even in the presence of inhomogeneous broadening. To increase the light-matter interaction and the extraction efficiency of the signal, the use of photonic nanostructures has proved to be necessary. The optical sensitivity of the setup allowed me to study in detail the mechanisms of exciton-phonon interaction, which is an important source of decoherence in solids, like the acoustic polaron formation, the quadratic coupling to acoustic phonons, and the excitation-induced dephasing. Furthermore, by inferring two-dimensional spectra, I demonstrate coherent couplings between various exciton complexes. Finally, I highlight a new multi-wave mixing protocol to control the coherent response of a single exciton, and I propose to employ it to control long-range radiative coupling between two QDs, which is a fundamental step towards achieving a quantum logic gate in solids.
|
Page generated in 0.1093 seconds