Spelling suggestions: "subject:"nanostructures.an properties"" "subject:"nanostructures.fast properties""
1 |
Functional design of magnetic nanostructures : a study of patterned elements, thin film interfaces & self-assembled systemsLove, David Michael January 2015 (has links)
No description available.
|
2 |
Low temperature scanning tunneling microscope study of metallic thin films and nanostructures on the semiconductor substratesQin, Shengyong, 1980- 10 October 2012 (has links)
Many properties of the thin films are different from the bulk value and in many cases, depend dramatically on the film thickness. In the metallic ultra-thin films epitaxially grown on the semiconductor substrate, the conduction electrons are confined by the vacuum and metal-semiconductor interface. When the film thickness is comparable to the electron Fermi wavelength, this confinement will produce discrete energy levels known as quantum well states (QWS), which dramatically modify the electronic structures of the thin film and this is called quantum size effect (QSE). QSE will have a profound effect on a lot of physical properties of the thin films. Among various systems exhibiting QSE, Pb/Si (111) is the most widely studied one and exhibits the richest phenomena in QSE. In this study, a home made low temperature Scanning Tunneling Microscopy/Spectroscopy (LT-STM/S) was used to study the superconductivities of the Pb thin films. Quantum oscillations of the superconductivity have been observed for the films down to 4 monolayer and the oscillation amplitude increases as the film gets thinner. To resolve the discrepancies between the superconductivities measured with ex-situ transport and in-situ STS. We also studied the influence of Au overlay on the Pb thin films with LT-STM/S, and found out the deposition of Au on Pb dramatically roughened the Pb films. Finally, we successfully grew large scale near perfect 2ML Pb films. There are two types of films which exhibit different Moiré patterns. LT-STS studies revealed there is big difference in the superconductivity Tc of these two films, both of which decreased dramatically from that of the 4ML film. / text
|
3 |
Single-electron Transport Spectroscopy Studies Of Magnetic Molecules And NanoparticlesHaque, Firoze 01 January 2011 (has links)
Magnetic nanoparticles and molecules, in particular ferromagnetic noble metal nanoparticles, molecular magnet and single-molecule magnets (SMM), are perfect examples to investigate the role of quantum mechanics at the nanoscale. For example, SMMs are known to reverse their magnetization by quantum tunneling in the absence of thermal excitation and show a number of fundamental quantum mechanical manifestations, such as quantum interference effects. On the other hand, noble metal nanoparticles are found to behave ferromagnetically for diameters below a few nanometers. Some of these manifestations are still intriguing, and novel research approaches are necessary to advance towards a more complete understanding of these exciting nanoscale systems. In particular, the ability to study an isolated individual nanoscale system (i.e just one molecule or nanoparticle) is both challenging technologically and fundamentally essential. It is expected that accessing to the energy landscape of an isolated molecule/nanoparticle will allow unprecedented knowledge of the basic properties that are usually masked by collective phenomena when the systems are found in large ensembles or in their crystal form. Several approaches to this problem are currently under development by a number of research groups. For instance, some groups are developing deposition techniques to create patterned thin films of isolated magnetic nanoparticles and molecular magnets by means of optical lithography, low-energy laser ablation, or pulsed-laser evaporation or specific chemical functionalization of metallic surfaces with special molecular ligands. However, it is still a challenge to access the properties of an individual molecule or nanoparticle within a film or substrate. iv I have studied molecular nanomagnets and ferromagnetic noble metal nanoparticles by means of a novel experimental approach that mixes the chemical functionalization of nano-systems with the use of single-electron transistors (SETs). I have observed the Coulomb-blockade single-electron transport response through magnetic gold nanoparticles and single-molecule magnet. In particular, Coulomb-blockade response of a Mn4-based SET device recorded at 240 mK revealed the appearance of two diamonds (two charge states) with a clear switch between one and the other is indicative of a conformational switching of the molecule between two different states. The excitations inside the diamonds move with magnetic field. The curvature of the excitations and the fact of having them not going down to zero energy for zero magnetic field, indicated the presence of magnetic anisotropy (zero-field splitting) in the molecule. In addition, the high magnetic field slope of the excitations indicates that transitions between charge states differ by a net spin value equal to 9 (|∆S| = 9), as expected from the behavior of Mn4 molecules in their crystalline form. Anticrossings between different excitations are indicative of quantum superpositions of the molecular states, which are observed for the first time in transport measurements through and individual SMM.
|
4 |
Functional nanostructures for magnetic and energy application. / 功能纳米结构在磁性和能源方面的应用 / CUHK electronic theses & dissertations collection / Functional nanostructures for magnetic and energy application. / Gong neng na mi jie gou zai ci xing he neng yuan fang mian de ying yongJanuary 2009 (has links)
FePt/B4C multilayer thin films are deposited on silicon substrates using magnetron sputtering with different B4C layer thickness. Experimental results suggest that the B4C layers effectively serve as spacers to separate the FePt layers, making the multilayer configuration stable even after film annealing at elevated temperatures. On the other hand, B and C are found to be incorporated into the FePt layer, which is responsible for the FePt grain growth confinement and grain separation, and eventually affects the properties of the composite film. Based on the experimental results of multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite thin films on Si substrate are synthesized, in which a record coercivity of 2200 Oe is achieved compared to similar system. The size uniformity of the FePt nanoparticles, the well-defined particle-particle separation, together with the good magnetic property and high temperature thermal stability of the overall composite film, make it a very promising candidate for the ultrahigh density magnetic storage media. / Functional nanostructures serve as the basic building blocks for nanodevices and significant efforts have been devoted to their morphology control and properties optimization. In present study, four functional nanostructures, i.e., FePt/B4C multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite film, Ga-doped ZnO nanowire arrays, and CdSe nanotube arrays are designed, synthesized and characterized in detail, in which the first two are expected to be prominent candidates for ultrahigh-density magnetic storage media while the later two have potential applications in solar energy conversion. / Semiconductor based one-dimensional nanostructures are investigated as promising building blocks for solar energy conversion devices. Two aspects are explored, aiming at increasing the energy conversion efficiency, i.e., facilitating electron transport and enhancing photon absorbing. In the first case, large area Ga-doped ZnO nanowire arrays are grown on transparent conducting substrate. Experimental results reveal the well-aligned array morphology and the uniform Ga concentration in these nanowires. In particular, direct I-V measurements performed on single nanowire-on-ITO substrate disclose its Ohmic contact with the conducting substrate and the significant conductivity improvement compared to undoped ZnO nanowire, In the second case, a novel synthesis strategy for nanotube arrays is developed and CdSe is used for demonstration, which material possessing more appropriate band gap as effective light harvester compared to that of materials for existing semiconductor nanotube arrays. The controllable tube wall thickness that can be increased until continuous CdSe porous network is obtained. The experimental results suggest a nanotube array formation mechanism that can be generally applied to a wide range of materials. / Zhou, Minjie = 功能纳米结构在磁性和能源方面的应用 / 周民杰. / Adviser: Li Quan. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 91-100). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zhou, Minjie = Gong neng na mi jie gou zai ci xing he neng yuan fang mian de ying yong / Zhou Minjie.
|
Page generated in 0.0793 seconds