• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 932
  • 349
  • 282
  • 122
  • 30
  • 23
  • 22
  • 17
  • 15
  • 13
  • 9
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 2209
  • 1574
  • 347
  • 289
  • 283
  • 264
  • 206
  • 181
  • 173
  • 173
  • 154
  • 153
  • 149
  • 135
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Investigations of carbon nanotube modified electrodes

Chou, Alison, Chemistry, Faculty of Science, UNSW January 2006 (has links)
The work presented in this thesis is concerned with electrodes modified with carbon nanotubes. Carbon nanotubes have been characterised with special emphasis on the oxygenated species generated from cutting in acid mixtures. Several different techniques have been used for the analysis, especially infrared spectroscopy (IR) in combination with X-ray spectroscopy (XPS) analysis and transmission electron microscopy (TEM) in combination with atomic force microscopy (AFM). TEM analyses were used to reveal the morphological differences between various nanotube cutting times. The lengths of the nanotube were found to decrease with increasing cutting time. Electrochemical measurements were performed on carbon nanotube modified electrodes using nanotubes of different cutting time. The peak separation of ferricyanide redox reaction was found to depend strongly on the length of nanotube and also on the orientation of nanotube at the interface. Whilst at the randomly dispersed, the peak separation showed a decrease with decreasing nanotube length, vertically aligned nanotubes showed no dependence of the peak separation on the nanotube length. Electrochemical results together with spectroscopy measurements show that the highly electroactive edge planes were located on the carbon nanotubes and the oxygenated species in the ends of the nanotubes from cutting in acid mixtures were responsible for the good electrochemical properties. Bamboo-shaped carbon nanotube is a morphological variation of multi-walled carbon nanotubes where the graphite planes are formed at an angle to the axis of the tube. Glassy carbon electrodes modified with bambootype carbon nanotubes showed greater electrochemical signal compared with electrodes modified with singlewalled carbon nanotubes due to the edge planes of graphite located at regular intervals along the walls of the bamboo-shaped carbon nanotube, thus confirming the importance of the ends of nanotube in controlling the kinetics of electron transfer events. Effect of nanotube orientation was studied using ferrocenemethylamine attached to randomly dispersed and vertically aligned nanotubes. The electron transfer kinetics was found to depend strongly on the orientation of the nanotube with the electron transfer at the randomly dispersed slower than vertically aligned. Results were addressed using the analogy that the ends of the nanotubes are like the ends of the tubes can be described as edge-plane-like whilst the tube walls are basal-plane-like. Difference in electron transfer kinetics suggested that the electron transfer in nanotubes could occur via two different pathways: through the edge plane-like opening of the nanotube or by hopping across the walls of the nanotube. Triton X-100 was used to dialyse the acid cut nanotubes. XPS analysis of dialysed nanotubes was compared with non-dialysed nanotubes. A reduced concentration of sulfate ions was found in the dialysesd sample. Nitrate ion (407 eV) was removed after dialysis. Amino groups (400 ev) and protonated amino-group (402 eV) both seemed to be removed slowly by dialysis. Theses ions could be ascribed to residual ions trapped inside nanotubes from cutting in acid mixtures. The electrochemical response of ferrocenemethylamine was also studied. The electron transfer rate constants were rate constants were higher at dialysed nanotube assembly than non-dialysed, which was attributed to doping effect incurred from cutting. Electron transfer between nanotube and gold electrode surface was studied by attaching nanotubes to linker length of 6, 8, and 11 carbons. The results were exploited to rationalise the role of the chemical structure of the nanotubes in facilitating electron transfer from the redox species to the electrode surface that was otherwise suppressed without the presence of nanotubes. The observed redox activity was a consequence of resonant electron transfer from the LUMO of the acceptor to the HOMO of the donor under the influence of an applied voltage, assuming the nanotube modified electrode behaves similarly to the metal-molecule-metal junction mode.
52

Molecular dynamics simulations of carbon nanotubes in liquid flow

Tang, Wenzhong. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Suresh G. Advani, Dept. of Mechanical Engineering. Includes bibliographical references.
53

Preparation and characterization of nitrogen doped carbon nanotube electrode materials

Maldonado, Stephen, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
54

Elucidating protein behavior on the nanoscale by using synthetic model peptides to investigate the interactions of proteins with single walled carbon nanotubes /

Bucknor, Kimberly A. January 2006 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2006. Dept. of Chemistry. / Includes bibliographical references (leaves 106-109).
55

Dynamics of double-walled carbon nanotube oscillators

Wong, Lai-ho. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
56

Synthesis of Boron-Containing Carbon Nanotubes Catalyzed by Cu/£^- Al2O3

Yang, Dong-Rong 20 August 2012 (has links)
none
57

Study of Adsorption of Methanol in an Activated Carbon and Carbon Nanotube Matrix for Use in a Solar Based Refrigeration Cycle

Sambath, Srivaths 2011 May 1900 (has links)
This thesis seeks to investigate the adsorption capabilities of activated carbon and carbon nanotubes. The adsorption of methanol on both of these substances was tested for their application in a solar based refrigeration cycle. Research on carbon nanotubes and their growth has been carried out for applications in the semiconductor industry. Enough focus has not been given to the use of nanotubes for refrigeration purposes. Adsorption refrigerators have been designed with the energy source being solar energy. Various adsorbent/adsorbate pairs have been tested in literature. The present work focuses on carbon nanotubes because theoretically, nanotubes should be able to adsorb better than activated carbon due to their high surface to volume ratios and hence a higher number of adsorption sites available for methanol to adsorb. The amount of adsorption of methanol on nanotubes depends on whether the end caps of the nanotubes are open or closed and also on the hydrophilic nature of the nanotubes. Nanotubes with ends closed are supposed to adsorb less than the nanotubes with their ends opened. The ends of carbon nanotubes can be blocked because of iron and other impurities. In this project, nanotubes are annealed under high vacuum to open the end caps. The hydrophobic nature of the nanotubes is corrected by treating them with concentrated nitric acid. The hydrophobic nature of the nanotubes is corrected by treating them with concentrated nitric acid. The acid treated nanotubes are used to obtain adsorption data at different temperatures. The adsorption of methanol on activated carbon, pristine and treated carbon nanotubes is measured at different temperatures. Electron microscopy is used to validate that annealing the nanotubes at high temperature under vacuum opens the end caps of the nanotubes. Finally, a matrix of nanotubes and carbon powder is prepared with different concentrations. The mixture is tested for adsorption of methanol. It is observed that the carbon nanotubes, pristine or treated, do not perform better than activated carbon. However, performance seems to increase when mixtures of activated carbon and carbon nanotubes are used as adsorbent. Also, it is found that mixtures containing annealed nanotubes perform better than mixtures with pristine nanotubes. Kinetics of the adsorption process is calculated for the different adsorbents used, which is used to explain the increase in the amount of methanol adsorbed for the activated carbon-carbon nanotube mixture.
58

The catalytical behavior of copper for multi¡Vwalled carbon nanotubes formation

Chang, Chia-Wei 24 July 2008 (has links)
"none"
59

Microélectrodes et actionneurs de fibres de nanotubes de carbone

Viry, Lucie Kuhn, Alexander Poulin, Philippe. January 2008 (has links) (PDF)
Thèse de doctorat : Sciences chimiques. Physico-chimie de la matère condensée : Bordeaux 1 : 2008. / Titre provenant de l'écran-titre.
60

Polystyrene grafting of CNx nanotubes for the elaboration of polystyrene-based nanocomposites

Dehonor Gomez, Mariamme Terrones Maldonado, Mauricio. Gauthier, Catherine Gonzalez Montiel, Alfonso. January 2008 (has links)
Thèse doctorat : Génie des Matériaux : Villeurbanne, INSA : 2007. / Thèse rédigée en anglais. Titre provenant de l'écran-titre. Contient des références bibliographiques.

Page generated in 0.0323 seconds