Spelling suggestions: "subject:"nanotubes bohemical vapor deposition."" "subject:"nanotubes semichemical vapor deposition.""
1 |
Catalytic chemical vapor deposition synthesis of carbon nanotubes from methane on SiO supported Fe and Fe-Ni catalysts /Nakagawa, Ayako. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 74-82). Also available on the World Wide Web.
|
2 |
LCVD synthesis of carbon nanotubes and their characterizationBondi, Scott Nicholas. January 2004 (has links) (PDF)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2005. / Z.L. Wang, Committee Member ; Thomas Starr, Committee Member ; Mostafa Ghiaasiaan, Committee Member ; W. Jack Lackey, Committee Chair; Shreyes Melkote, Committee Member. Vita. Includes bibliographical references.
|
3 |
Carbon Nanotube ProductionHocaoglu, Caner 01 November 2011 (has links) (PDF)
Carbon nanotubes (CNTs), allotropes of carbon with a cylindrical nanostructure, are one of the most attractive research subjects for scientists and industry because of their extraordinary chemical, electrical, optical, mechanical and thermal properties, and their wide range of potential application areas. Mainly, there are two types of carbon nanotubes: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs).
The most commonly used methods for carbon nanotube production are arc discharge, laser ablation, and chemical vapor deposition (CVD). In the CVD method, CNTs are produced from thermal decomposition of the carbon-containing molecules on a suitable transition metal catalyst. CVD method enables large scale production of high-quality CNTs with low cost compared to other methods. The growth and morphology of CNTs can be controlled by adjusting the reaction parameters.
In this study, Co and Mo impregnated CaCO3 catalysts were synthesized at different Co:Mo weight ratios and calcined at different temperatures. XRD results showed that there was mainly CaCO3 compound in the catalysts calcined at 500º / C whereas the catalysts calcined at 700 and 750 º / C were mainly composed of CaO and Ca(OH)2 compounds. In addition to these, CaMoO4, CoO, CoMoO4 and Mo2C were the other solid phases mainly observed in all catalysts.
The production of CNTs was performed by chemical vapor deposition of acetylene at a temperature range of 500-700
|
4 |
Steps toward the creation of a carbon nanotube single electron transistorFerguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
|
Page generated in 0.1396 seconds