• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geochemical and Paleontological investigations of the Neoproterozoic-Cambrian Transition: Case Studies on geochemical clast provenance, emerging paleo redox proxies, and ambiguous dubiofossils

Nolan, Morrison Robert 02 December 2022 (has links)
The transition from the Neoproterozoic to the early Cambrian world was a critical time in the co-evolution of life and the environment, when dramatic changes in the environment, including global glaciations and rising atmospheric oxygen levels precipitated the conditions in which variety of complex life emerged, diversified, and proliferated. However, questions persist regarding the timing and duration of those environmental events, and thus the extent of their direct effect on the evolution of life. These changing environmental conditions also produced unique taphonomic conditions that preserved a wide variety of organisms, and also produced unusual early diagenetic features that can be difficult to distinguish from fossilized organisms. In order to better resolve the link between life and the environment during the Neoproterozoic to Cambrian transition I present three chapters. The first chapter of this dissertation examines the carbonate clasts from a glacial diamictite deposited at the end of the Cryogenian Period in South China. By determining the source locality of those carbonate clasts using stable carbon and oxygen isotope compositions, we can better understand the extent of the Marinoan Glaciation and the intensity of its impact on the Earth's surface. In the second chapter of this dissertation, I investigate the changing chemical conditions of ocean waters following both the Marinoan glaciation and potentially one of the most intense disruptions to the carbon cycle in Earth History, the Ediacaran Shuram carbon isotope anomaly. I use Hg concentrations and stable isotope compositions to determine changes in sediment sourcing along with changes in marine redox, such as the development of photic zone euxinia. In the third chapter, I investigate the identity of Brooksella alternata, a purportedly cnidarian fossil that was later suggested to be a hexactinellid sponge fossil. My morphological and compositional analysis reveals B. alternata to be a concretion and thus a pseudofossil. / Doctor of Philosophy / The Earth experienced major changes between 635 and ~514 million years ago; the last global scale glaciation in the history of Earth ended, early animals arose, primary producers such as algae grew larger and more complex, and the first animals that were mobile and with hard skeletal parts evolved and diversified tremendously. Concomitantly, the environment on the Earth changed dramatically: the carbon cycle experienced one of the greatest disruptions in all of Earth history and the oceans and atmosphere gradually became more oxygen-rich, though areas with low levels of dissolved molecular oxygen and high concentrations of dissolved iron or hydrogen sulfide persisted, which may have impeded the diversification of complex animals. The exact timing and intensity of these changes are not fully resolved, and by investigating this time interval in the geologic record, we can better understand how the world changed and how life at the time responded. These changing environments also produced unique conditions which led to fossils being preserved in unique ways, though these conditions also produced non-biological structures that superficially resemble fossils. The first chapter of this dissertation investigates the source of clasts made of carbonate rock from a glacial diamictite (the poorly sorted mixture of the fine-grained and coarse-grained deposits left behind as glaciers recede) in South China deposited at the end of the last global scale glaciation about 635 million years ago. By determining the source, we can evaluate how far glacial activity transported sediments. I found that the previously suggested source of these clasts does not match the geochemical fingerprint of the carbonate clasts. I propose that these carbonate clasts may have come from a source that has since become "extinct" because of glacial erosion, or they may have come from another continent (for example, India). These scenarios highlight the magnitude of the global glaciation. In the second chapter, I investigated the mercury concentrations and stable isotope compositions from organic rich shales deposited ~550 million years ago. Mercury is an emerging tool for evaluating the level of dissolved molecular oxygen in ancient oceans. In this study, I found evidence of locally complex marine oxygen levels, including evidence for photic zone euxinia, meaning waters where oxygen was absent and hydrogen sulfide was present. Such conditions are toxic to animals and may have delayed the diversification of complex animal life. In the final chapter, I analyzed the ~503 million-year-old fossil Brooksella alternata. It was first described more than 100 years ago as a jelly-fish fossil. More recently it was suggested to be a sponge fossil (though it has been ascribed many other identities). Based on morphological analysis of a large collection, I determined that Brooksella alternata is not a fossil but rather a concretion with unusual shape.

Page generated in 0.3071 seconds