• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protection of Washed and Pasteurized Shell Eggs against Fungal Growth by Application of Natamycin-Containing Shellac Coating

Song, Yang 28 September 2016 (has links)
No description available.
2

Use of Antimycotics, Modified Atmospheres, and Packaging to Affect Mold Spoilage in Dairy Products

Grove, Tina Moler 04 April 2000 (has links)
The effects of natamycin, oxygen scavengers and a 25% CO₂:75% N₂ modified atmosphere on the growth of <I>Penicillium roqueforti</I> in shredded cheddar and mozzarella cheese stored at 10°C for 0, 60, 120, or 180 day was studied. Microbiological and sensory testing was assessed on 0, 7, 14 and 21 days after opening. Carbon dioxide decreased (P<0.05) as O₂ (P>0.05) and N₂ (P>0.05) increased throughout storage. Cheddar and mozzarella cheeses were stored for 180 and 60 days, respectively without significant (P> 0.05) increases in yeast and mold populations. Fungal populations increased significantly (P< 0.05) after packages were opened. Differences in yeast and mold (YM) counts during storage and once the packages were opened were independent of natamycin application and presence, O₂ scavengers and inoculated <I>Penicillium roqueforti</I> for both types of cheeses. Growth of <I>Penicillium roqueforti, Aspergillus niger, Geotrichum candidum</I> and <I>Neosartorya fischeri</I> were evaluated in atmospheres of 0:30:70, 0.5:29.5:70, 1:29:70, 2:28:70, and 5:25:70, O₂:CO₂:N₂ over a 5-day period. Spores were cultured on antibiotic-supplemented potato dextrose agar (pH 5.6, a<sub>w</sub> 0.95) and incubated at 25°C. All four molds germinated and grew at 0.5:29.5:70. Extent of mycelia growth diameter (mm) increased significantly (P<0.05) as oxygen concentration increased from 0.5% to 5%. All growth was inhibited at 0:30:70, but germination and growth occurred once cultures were exposed to 20.9% atmospheric O₂, indicating that a modified atmosphere containing no residual O₂ is fungistatic. Yeast and mold growth was seen in ultra-pasteurized (UP) extended shelf-life fluid milk stored at (7.2°C). Ten half-pint, pint, quart and half gallon filled cartons were randomly selected from all UP products available. Samples, pulled at random on day 0, 15, 30, 45, and 60, were plated on Yeast and Mold Petrifilm™. Forty-seven percent of the UP products stored for 45 days tested positive for mold. Fungal growth was apparent down the side and along the bottom of the 5th panel. Contamination was traced to the presence of yeast and mold spores in paperboard cartons. Pinholes were present in the polyethylene coating and wicking occurred at the unskived 5th panel. Fungi of similar origin and fatty acid profile were isolated from UP milk products and the paperboard cartons. / Ph. D.
3

Use of Natural Antimicrobials to Control Spoilage in Marinara-Type Sauce

Abessinio, Austin R 13 December 2014 (has links)
Marinara-type sauces were created using three natural antimicrobials, as well as two combination treatments (natamycin, propionic acid, cultured dextrose, natamycin-propionic acid, and natamycin-cultured dextrose) and two controls (sodium benzoate-potassium sorbate, no preservatives). Samples were subjected to a shelf-life study at 20 C with both non-inoculated sauce and sauces that were either inoculated with Zygosaccharomyces bailii or a cocktail of thermophilic fermentative organisms. Natamycin and Natamycin-propionic acid treatments had fewer log colony counts (CFU/g) of yeast and lactic acid bacteria than the negative control after 42 days of storage and performed as well or better than the positive control throughout the storage period. No sensory differences were detected (P>0.05) between the natamycin treatment when compared to the industry standard (positive control), but the natamycin-propionic acid treatment was different (P<0.05). Results indicate that natamycin and/or natamycin-propionic acid could be used as a natural alternative in the formulation of marinara sauce.
4

Improved Properties of Natamycin Upon Formation of Cyclodextrin Inclusion Complexes

Koontz, John L. 20 February 2003 (has links)
Natamycin is an antimycotic with very low water solubility and extremely high photosensitivity, which is used to extend the shelf life of shredded cheese products. The objectives of this research are: (a) to find a new delivery system for natamycin, which increases its aqueous solubility and (b) to increase the chemical stability of natamycin so that it has a prolonged antifungal effect on the surface of the shredded cheese. Molecular inclusion complexes of natamycin were formed with β-, hydroxypropyl β-, and γ- cyclodextrins (CDs) which allowed large increases in aqueous solubility without the use of organic co-solvents or surfactants. The water solubility of natamycin was increased 16-fold, 73- fold, and 152-fold with β-CD, γ-CD, and hydroxypropyl β-CD, respectively. The natamycin:CD inclusion complexes resulted in nearly equivalent in vitro antifungal activity as natamycin in its free state. Nuclear magnetic resonance (NMR) was utilized to prove the formation of true inclusion complexes. 1H NMR shift titrations of N-(3 -N-dimethylaminosuccimido) natamycin with β- and γ-CDs enabled determination of the stoichiometry of both complexes as 1:1. Aqueous solutions of natamycin (20 mg/L) were found by quantitative HPLC to be completely degraded after 24 hours of exposure to 1000 lux fluorescent lighting at 4 °C. After 14 days of storage in darkness at 4 °C, 92.2% of natamycin remained in active form. Aqueous solutions of natamycin:β-CD complex and natamycin:γ-CD complex were significantly more stable (p < 0.05) than natamycin in its free state when stored in darkness at 4 °C. Clear poly(ethylene terephthalate) packaging with an ultraviolet light absorber allowed 85.0% natamycin to remain after 14 days of storage under 1000 lux fluorescent lighting at 4 °C. Such dramatic increases in water solubility and light stability will enable natamycin to function as a more effective antimycotic in the food industry. / Master of Science
5

Ensuring the Stability of Natamycin on Shredded Cheese

Teter, Vanessa Elizabeth 30 November 2006 (has links)
Natamycin is an antimycotic compound that is widely used in the cheese industry to increase the shelf life of cheeses, especially shredded cheeses, by inhibiting the growth of molds. Natamycin is applied to the surface of cheese as an aqueous suspension or as a powder. However, natamycin is not readily water soluble making it harder to distribute evenly over shredded cheese Natamycin is degraded by ultraviolet (UV) light at wavelengths of 350 nm and below. Typical packaging applications do not provide adequate UV protection causing natamycin to degrade. This work was undertaken to determine the efficacy of UV absorber film to prevent UV light degradation of natamycin on the surface of shredded cheese. Current accepted methods to determine concentration of natamycin were evaluated for appropriateness in natamycin degradation studIes. The use of cyclodextrins to increase water solubility was tested to see if a uniform distribution of natamycin over the shredded cheese could be done effectively. Furthermore, a known application of mold was performed to see how well natamycin and each of its applications could prevent visible mold growth from occurring. The International Dairy Federation recognizes two methods to quantify natamycin on shredded cheese: high performance liquid chromatography (HPLC) and spectrophotometry. Concentrations of natamycin in aqueous suspensions were determined using both methods. Results show that spectrophotometry is flawed when quantifying the amount of active natamycin because the method gives erroneously high results. The amount of active natamycin is not accurately quantified using spectrophotometric techniques because it cannot separate the active form from the inactive form of natamycin. Polymer packages containing a UV absorber (11.4% light transmission at 350 nm) allow significantly less UV-associated degradation of natamycin than those packages that lacked a UV protectant (90.0% light transmission at 350 nm) (p<0.05). Incorporating a UV absorber into a package helps protect natamycin and its various complexes from UV light degradation, which can increase the shelf life of shredded cheese. However, even with a UV absorber, natamycin is still able to degrade. Natamycin was complexed with different cyclodextrins to help better solubilize natamycin â β-cyclodextrin, hydroxy-propyl β-cyclodextrin and γ-cyclodextrin. Using cyclodextrins to apply natamycin more uniformly onto shredded cheese did not significantly increase the consistency of distribution (p<0.05). Variability was uniform throughout all treatments with the exception of HPBCD complex. After 27 days, all of the UV packages treated with each of the cyclodextrin treatments containing shredded cheese began to show visible mold growth. Those packages stored in total darkness remained mold free through the duration of the experiment ending on day 62. When untreated with natamycin and an initial concentration of 101-102 spores/gram of Penicillium roqueforti, shredded cheese remained free from visible mold growth for 24 days in total darkness at 4°C. Samples treated with one of the natamycin treatments were able to remain mold free for at least 9 more days, showing visible signs of mold growth at day 33. There was no statistical difference between the treatments of dry natamycin, aqueous suspension natamycin, β-cyclodextrin-natamycin complex, and γ-cyclodextrin-natamycin complex (p<0.05). However, there was a difference with the use of hydroxy-propyl β-cyclodextrin-natamycin complex. Hydroxy-propyl β-cyclodextrin-natamycin complex allowed the shredded cheese to last for 41 days, 17 days longer than the control sample. / Master of Science
6

USO DE NATAMICINA NO CONTROLE DO DESENVOLVIMENTO DE FUNGOS EM SALAME TIPO ITALIANO

Brustolin, Jean Carlos 25 May 2009 (has links)
This study had as objective to evaluate the behavior of natamycin in different concentrations and forms of application to control the growth of molds in Italian type salami matured in maturation rooms wood through counting of molds and yeasts with swabs and photographic monitoring weekly. Was also evaluated the effect of natamycin on the physical chemical aspects such as water activity, moisture, fat and protein and the sensory aspect evaluated by multiple comparison test. Salami that were evaluated had their casings hydrated with a solution of natamycin with 0.1%, 0.05% and 0,025% before the stuffed and the 0.1% sprayed after smoking in smoking room. It was found that there was a lower count of molds and yeasts in the samples treated with 0.1% natamycin both by immersion or by spraying. The natamycin did not interfere in the sensory and physical chemical aspects. / Este trabalho teve como objetivo avaliar o comportamento da natamicina em diferentes concentrações e forma de aplicação no controle do desenvolvimento de bolores e leveduras em salames tipo italiano maturados em salas de maturação de madeira. O acompanhamento foi realizado através de contagem de bolores e leveduras com swabs e acompanhamento fotográfico semanal. Também foi avaliado o efeito da natamicina em relação a aspectos físico químicos como a atividade de água, umidade, gordura e proteína e o aspecto sensorial foi avaliado através do teste de comparação múltipla. Foram avaliados os salames que tiveram suas tripas hidratadas com solução de natamicina nas concentrações de 0,1%, 0,05% e 0,025% antes do embutimento e ainda a 0,1% aspergido após a defumação em fumeiro. Verificou-se uma contagem de bolores e leveduras menor nas amostras tratadas com concentração de 0,1% de natamicina tanto por imersão quanto por aspersão. A natamicina não interferiu no aspecto sensorial e nem nos aspectos físico químicos.

Page generated in 0.0474 seconds