Spelling suggestions: "subject:"batural sas 1treatment"" "subject:"batural sas entreatment""
1 |
Séparation du co2 d’un mélange co2-ch4 par cristallisation d’hydrates de gaz : influence d’additifs et effet des conditions opératoires / Co2 removal from a co2 – ch4 mixture by gas hydrate cristallization : influence of additives and effect of operating conditionsRicaurte Fernandez, Marvin José 09 November 2012 (has links)
La séparation du CO2 d'un mélange de gaz par cristallisation d'hydrates de gaz est un procédé qui pourrait à terme présenter une alternative intéressante aux techniques conventionnelles de capture du CO2. L'objectif de cette thèse était d'évaluer le potentiel de ce procédé "hydrates" pour séparer le CO2 d'un mélange CO2-CH4 riche en CO2. Nous avons étudié en particulier la sélectivité de la séparation vis-à-vis du CO2 et la cinétique de cristallisation des hydrates, ainsi que l'effet d'additifs thermodynamiques et cinétiques (et de certaines de leurs combinaisons) sur ces deux paramètres pour différentes conditions opératoires (pression, température, concentrations). Les expériences de formation/décomposition d’hydrates ont été réalisées en mode "batch" dans un réacteur haute pression faisant partie d'un pilote expérimental conçu et construit entièrement pendant cette thèse. Un modèle semi-empirique a été également développé pour estimer le taux de conversion de l’eau en hydrate et la composition des différentes phases en présence (hydrates, liquide et vapeur) à l'équilibre. Les résultats obtenus montrent que l'association du sodium dodécyl sulfate (SDS), utilisé en tant que promoteur cinétique, avec du tétrahydrofurane (THF), utilisé en tant que promoteur thermodynamique, permet d'obtenir des résultats intéressants en terme de quantité d'hydrates formés et de cinétique de formation. La sélectivité de la séparation vis-à-vis du CO2 reste cependant trop faible (en moyenne quatre molécules de CO2 piégées dans la structure de l'hydrate pour une de CH4) pour envisager d’utiliser ce procédé "hydrates" à plus grande échelle afin de séparer le CO2 de ce type de mélange de gaz. / The separation of CO2 from a gas mixture by crystallization of gas hydrates is a process that could eventually provide an attractive alternative to the conventional techniques used for CO2 capture. The aim of this thesis was to evaluate the potential of this "hydrate" process to separate CO2 from a CO2-CH4 gas mixture, rich in CO2. We have studied in particular the selectivity of the separation toward CO2 and the hydrate crystallization kinetics. The effects of thermodynamic and kinetic additives (and some additive combinations) on these two parameters for different operating conditions (pressure, temperature, concentrations) were evaluated. Hydrate formation and dissociation experiments were performed in "batch mode” in a high pressure reactor, and with an experimental pilot rig designed and built entirely during this thesis. A semi-empirical model was also developed to estimate the water to hydrate conversion and the composition of the different phases (hydrates, liquid and vapor) at equilibrium. The results show that the combination of sodium dodecyl sulfate (SDS) used as a kinetic promoter, with tetrahydrofuran (THF) used as a thermodynamic promoter, provides interesting results in terms of both the amount of hydrates formed and the hydrate formation kinetics. The selectivity of the separation toward CO2 remains too low (an average of four CO2 molecules trapped in the hydrate structure for one of CH4) to consider using this "hydrate" process on a larger scale to separate CO2 from such a gas mixture.
|
2 |
Clathrates d’Hydroquinone : aspects fondamentaux et appliqués pour la séparation du CO2 d’un mélange CO2/CH4 / Hydroquinone Clathrates : Fundamental and applied aspects of capturing CO2 from a CO2/CH4 gas mixtureCoupan, Romuald 26 September 2017 (has links)
Les clathrates organiques, particulièrement ceux formés entre l’hydroquinone (HQ) et les gaz, sont des entités supramoléculaires montrant un potentiel intéressant comme matériau alternatif pour les applications de stockage et de séparation de gaz. Cette étude traite de l’évaluation du clathrate d’HQ pour la séparation du CO2 contenu dans les mélanges CO2/CH4 par réaction gaz-solide. D’un point de vue fondamental, différentes propriétés des clathrates d’HQ-CO2, -CO2/CH4 et -CH4 ont été analysées: signatures spectroscopiques, structures cristallines, morphologies, capacités de stockage de gaz, températures de relargage de gaz et températures de transition structurales. Ce travail offre aussi de nouveaux éléments de compréhension des mécanismes de formation et de dissociation des clathrates d’HQ. Il est montré que, pour capturer efficacement et sélectivement le CO2, la réaction d’enclathration doit être faite en utilisant l’intermédiaire « clathrate vide » formé à partir du clathrate d’HQ-CO2. D’un point de vue pratique, les courbes d’équilibre, les enthalpies de dissociation, et les occupations dans les conditions d’équilibre ont été déterminées pour les clathrates d’HQ-CO2 et -CH4 dans une gamme étendue de température allant de 288 à 354 K. De plus, la cinétique de la réaction d’enclathration a été étudiée expérimentalement et modélisée. Dans cette optique, un matériau composite à base d’hydroquinone a été développé, et permet de capter et stocker le gaz de manière réversible, et d’améliorer significativement la cinétique d’enclathration. Le procédé de séparation de gaz basé sur la formation du clathrate d’hydroquinone a aussi été étudié. L’influence des paramètres opératoires (i.e. temps de réaction, pression, température et composition du gaz d’alimentation) sur la cinétique de capture, la sélectivité et la capacité de stockage de gaz ont été évaluées à travers des expériences menées à l’échelle pilote. / Organic clathrate compounds, particularly those formed between hydroquinone (HQ) and gases, are supramolecular entities recently highlighted as promising alternatives for applications such as gas storage and separation processes. This study deals with an evaluation of the HQ clathrates to separate CO2 from CO2/CH4 gas mixtures through direct gas-solid reaction. On the fundamental point of view, new insights into several properties of the CO2-, CO2/CH4-, and CH4-HQ clathrates were studied: spectroscopic signatures, crystal structures, morphologies, gas storage capacities, guest release temperatures and structural transition temperatures. This work also offers new elements of understanding HQ clathrate formation and dissociation mechanisms. It is shown that, for capturing CO2 the most selectively and efficiently, the enclathration reaction has to be done with the “guest-free intermediate” derived from the CO2−HQ clathrates. On a practical point of view, the equilibrium curves, the dissociation enthalpies, and the occupancies at the equilibrium clathrate forming conditions, were determined for the CO2- and CH4-HQ clathrates in an extended range of temperature from about 288 to 354 K. Moreover, the kinetics of the gas-solid enclathration reaction were studied experimentally and modelled. In this way, HQ-based composite materials were developed and allows to reversibly capture and store gases, and to significantly improve the enclathration kinetics. The hydroquinone clathrate based gas separation (HCBGS) process was also investigated. The influence of the process operating parameters (i.e. reaction time, pressure, temperature and feed gas composition) on the CO2 capture kinetics, the selectivity toward CO2, and the storage capacity were assessed through experiments performed at pilot scale.
|
Page generated in 0.0823 seconds