• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind Turbine Noise and Natural Sounds : Masking, Propagation and Modeling

Bolin, Karl January 2009 (has links)
Wind turbines are an environmentally friendly and sustainable power source. Unfortunately, the noise impact can cause deteriorated living conditions for nearby residents. The audibility of wind turbine sound is influenced by ambient sound. This thesis deals with some aspects of noise from wind turbines. Ambient sounds influence the audibility of wind turbine noise. Models for assessing two commonly occurring natural ambient sounds namely vegetation sound and sound from breaking waves are presented in paper A and B. A sound propagation algorithm has been compared to long range measurementsof sound propagation in paper C. Psycho-acoustic tests evaluating the threshold and partial loudness of wind turbine noise when mixed with natural ambient sounds have been performed. These are accounted for in paper D. The main scientific contributions are the following.Paper A: A semi-empiric prediction model for vegetation sound is proposed. This model uses up-to-date simulations of wind profiles and turbulent wind fields to estimate sound from vegetation. The fluctuations due to turbulence are satisfactory estimated by the model. Predictions of vegetation sound also show good agreement to measured spectra. Paper B: A set of measurements of air-borne sound from breaking waves are reported. From these measurements a prediction method of sound from breaking waves is proposed. Third octave spectra from breaking waves are shown to depend on breaker type. Satisfactory agreement between predictions and measurements has been achieved. Paper C: Long range sound propagation over a sea surface was investigated. Measurements of sound transmission were coordinated with local meteorological measurements. A sound propagation algorithm has been compared to the measured sound transmission. Satisfactory agreement between measurements and predictions were achieved when turbulence were taken into consideration in the computations. Paper D: The paper investigates the interaction between wind turbine noise and natural ambient noise. Two loudness models overestimate the masking from two psychoacoustic tests. The wind turbine noise is completely concealed when the ambient sound level (A-weighed) is around 10 dB higher than the wind turbine noise level. Wind turbine noise and ambient noise were presented simultaneously at the same A-weighed sound level. The subjects then perceived the loudness of the wind turbine noise as 5 dB lower than if heard alone. Keywords: Wind turbine noise, masking, ambient noise, long range sound propagation / QC 20100705
2

Natural and Experimental Noise Affects Acoustic Communication in Songbirds

Reed, Veronica Arlene 01 March 2021 (has links) (PDF)
Background noise is ubiquitous and can impair acoustic communication and influence signaling behavior in animals. Despite evidence demonstrating myriad effects of anthropogenic noise on animal communication, precisely how natural background noise influences communication and behavior remains unclear. Yet, natural sources of background noise, such as rushing rivers or crashing ocean surf, share similar power spectra to sources of anthropogenic noise and can occur at high amplitudes, potentially masking acoustic signals. To investigate the effects of water-generated noise on songbird behavior, we experimentally broadcast landscape-level playbacks of ocean surf and river noise in coastal California, USA, and riparian habitat in Idaho, USA, respectively. In Chapter 1, we conducted a conspecific playback experiment examining how territorial defense behaviors of lazuli buntings (Passerina amoena) and spotted towhees (Pipilo maculatus) vary in response to broadcast water noise. We also incorporated cicada noise from a serendipitous Okanagana spp. emergence as a biotic source influencing lazuli bunting behavior. Both species produce songs that share substantial spectral overlap with low-frequency, water-generated noise, and lazuli bunting song shares an additional high-frequency overlap with cicada calls. Thus, there is potential for background acoustic conditions to mask conspecific signals. We found that detection and discrimination of conspecific playback occurred more slowly for both species as sound level increased. Lazuli buntings also exhibited divergent flight behaviors in response to high- and low-frequency acoustic sources, both dependent and independent of sound level. In Chapter 2, we investigated how amplitude and frequency of water-generated noise influences spectral and temporal song characteristics in six songbird species. We recorded individuals defending territories across 37 sites, with each site representing one of four acoustic environments: naturally quiet ‘controls’, naturally noisy ‘positive controls’ adjacent to the ocean or a whitewater river, ‘phantom’ playback sites with continuous broadcast of low-frequency water noise, and ‘shifted’ playback sites with continuous broadcast of high-frequency water noise. We predicted that all individuals exposed to ‘positive control’, ‘phantom’, or ‘shifted’ noise would adjust song structure, but the magnitude of signal modification would be larger in noisier locations and the type of modification would depend on the spectral profile of the acoustic environment. No two species altered songs in precisely the same way. However, song structure of all six species varied with amplitude and/or frequency of background noise. Together our results demonstrate that natural noise can impair agonistic behaviors and influence vocal structure. These findings suggest that the natural acoustic environment shapes acoustic communication, highlighting natural soundscapes as an under-appreciated axis of the environment.

Page generated in 0.042 seconds