• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metodologia multi-estágio para restabelecimento de sistemas elétricos de distribuição utilizando algoritmos bio-inspirados

Arcanjo, Diego Nascimento 24 July 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-02-05T17:32:25Z No. of bitstreams: 1 diegonascimentoarcanjo.pdf: 1706072 bytes, checksum: 2329ddd810b5aca8da733c7793937d65 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T11:52:47Z (GMT) No. of bitstreams: 1 diegonascimentoarcanjo.pdf: 1706072 bytes, checksum: 2329ddd810b5aca8da733c7793937d65 (MD5) / Made available in DSpace on 2016-02-26T11:52:47Z (GMT). No. of bitstreams: 1 diegonascimentoarcanjo.pdf: 1706072 bytes, checksum: 2329ddd810b5aca8da733c7793937d65 (MD5) Previous issue date: 2014-07-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é proposto uma metodologia multi-estágio utilizando algoritmos bio-inspirados para a resolução do processo de Restabelecimento de Sistemas Elétricos de Distribuição. O primeiro estágio consiste na solução de uma função multi-objetivo visando a determinação da configuração final das chaves do sistema após isolados os ramos defeituosos (configuração de pós-contingência). Neste estágio, a modelagem da função multi-objetivo busca uma configuração adequada de chaves para minimizar a carga não suprida, as perdas do sistema, o número de chaveamentos, penalizando as violações aos limites operativos do sistema e considerando a presença de consumidores prioritários. Adicionalmente, a restrição de radialidade é assegurada em cada configuração utilizando, caso necessário, uma técnica de abertura de laço. A partir da configuração final obtida no primeiro estágio, são identificadas as chaves que foram manobradas. O segundo estágio da metodologia busca a determinação da sequência de chaveamento levando em conta a minimização da energia não suprida. Essa formulação permite que o tempo de manobra das chaves possa ser considerado. Sendo necessário, é realizado, ainda neste estágio, cortes mínimos discretos de carga para cada manobra executada. Em ambos os estágios foram utilizadas algoritmos bio-inspirados como métodos de solução dos respectivos problemas de otimização não-lineares inteiros mistos. As técnicas utilizadas são: Algoritmos Genéticos, Método da Eco Localização de Morcegos (Bat Algorithm) e Método da Reprodução dos Pássaros Cuco (Cuckoo Search). Os desenvolvimentos do algoritmo proposto foi implementado no ambiente MatLab®. Os resultados obtidos foram comparados com outras metodologias conhecidas da literatura comprovando a eficiência e robustez da técnica proposta. / This dissertation proposes a methodology for solving multi-stage process of Restoration on Power Distribution Systems using Nature-Inspired Algorithms. The first stage consists in solving a fitness multi-objective function in order to determine the final configuration of the switches after the faulted branches were isolated (post-contingency configuration). In this stage the multi-objective function seeks through the suitable configuration to minimize the undelivered power, the power losses, the number of switching, penalizing for violation in the system operational limits and taking in consideration the presence of priority load in the system. Additionally the radiality constraint is improved using an open loop technique. After the final configuration is obtained, for the first stage, the switches which were maneuvered are identified. The second stage of the methodology is to determine the sequence of switching taking into account the minimization of energy not supplied. This formulation allows to consider the switching operation time. If necessary, the minimum discrete load shedding procedure is made for each maneuvered switch. In both stages Nature-Inspired Algorithms to solve mixed integer nonlinear programming problems were used. The techniques used are: Genetic Algorithms, Bat Algorithm and Cuckoo Search. The developments of the proposed algorithm were implemented in MatLab ® environment. The results obtained were compared with other well-known methodologies showing the efficiency and robustness of the proposed technique.
2

Safety-aware autonomous robot navigation, mapping and control by optimization techniques

Lei, Tingjun 08 December 2023 (has links) (PDF)
The realm of autonomous robotics has seen impressive advancements in recent years, with robots taking on essential roles in various sectors, including disaster response, environmental monitoring, agriculture, and healthcare. As these highly intelligent machines continue to integrate into our daily lives, the pressing imperative is to elevate and refine their performance, enabling them to adeptly manage complex tasks with remarkable efficiency, adaptability, and keen decision-making abilities, all while prioritizing safety-aware navigation, mapping, and control systems. Ensuring the safety-awareness of these robotic systems is of paramount importance in their development and deployment. In this research, bio-inspired neural networks, nature-inspired intelligence, deep learning, heuristic algorithm and optimization techniques are developed for safety-aware autonomous robots navigation, mapping and control. A bio-inspired neural network (BNN) local navigator coupled with dynamic moving windows (DMW) is developed in this research to enhance obstacle avoidance and refines safe trajectories. A hybrid model is proposed to optimize trajectory of the global path of a mobile robot that maintains a safe distance from obstacles using a graph-based search algorithm associated with an improved seagull optimization algorithm (iSOA). A Bat-Pigeon algorithm (BPA) is proposed to undertake adjustable speed navigation of autonomous vehicles in light of object detection for safety-aware vehicle path planning, which can automatically adjust the speed in different road conditions. In order to perform effective collision avoidance in multi-robot task allocation, a spatial dislocation scheme is developed by introduction of an additional dimension for UAVs at different altitudes, whereas UAVs avoid collision at the same altitude using a proposed velocity profile paradigm. A multi-layer robot navigation system is developed to explore row-based environment. A directed coverage path planning (DCPP) fused with an informative planning protocol (IPP) method is proposed to efficiently and safely search the entire workspace. A human-autonomy teaming strategy is proposed to facilitate cooperation between autonomous robots and human expertise for safe navigation to desired areas. Simulation, comparison studies and on-going experimental results of optimization algorithms applied for autonomous robot systems demonstrate their effectiveness, efficiency and robustness of the proposed methodologies.

Page generated in 0.0542 seconds