• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation of laminar separated flows on adaptive tri-tree grids with the finite volume method

Hu, Zheng Zheng January 2000 (has links)
In this work, a code has been developed that solves the Navier-Stokes equations using the finite volume method with unstructured triangular grids. A cell-centred, finite volume method is used and the pressure-velocity coupling is treated using both the SMTLE and the MAC algorithms. The major advantage of using triangular grids is their applicability to complex geometry. A special treatment is developed to ensure good quality triangular elements around the boundaries. The numerical simulation of incompressible flow at low Reynolds number is studied in this thesis. A code for generating triangular grids using the tri-tree algorithm has been written and an adaptive finite volume method developed for calculating laminar fluid flow. The grid is locally adapted at each time step, with grid refinement and derefinement dependent on the vorticity magnitude. The resulting grids have fine local resolution and are economical in reducing the numerical simulation time. The discretised equations are solved by using an iterative point by point Gauss-Seidel solver. For calculating the values of velocity and pressure at vertices of triangular grids, special interpolation schemes (averaged linear-interpolation and scattered interpolation) are used to increase the accuracy. To avoid the well known checkerboard error problems, i. e., the oscillations occurring in the pressure field, third derivative terms in pressure, first introduced by Rhie-chow (1983), are added to the mass flux velocity. Convective terms are approximated using a QUICK (Quadratic Upstream Interpolation for Convective Kinematics) differencing scheme which has been developed here in for unstructured grids. Three cases of two-dimensional viscous incompressible fluid flow have been investigated: the first is channel flow, in which the numerical results are compared with the analytical solution; the second case is the backward-facing step flow; and the third case is flow past circular cylinders at low Reynolds number (Re). The numerical results obtained for the last two cases are compared with published data. The evolution of vortex shedding is presented for the case of unidirectional flow past a circular cylinder at Re=200. In addition, drag and lift force coefficients are calculated and compared for single and multiple cylinders in unidirectional flow.
2

An assessment of renormalization methods in the statistical theory of isotropic turbulence

Kiyani, Khurom January 2005 (has links)
For the latter half of the last century renormalization methods have played an important part in tackling problems in fundamental physics and in providing a deeper understanding of systems with many interacting scales or degrees of freedom with strong coupling. The study of turbulence is no exception, and this thesis presents an investigation of renormalization techniques available in the study of the statistical theory of homogeneous and isotropic turbulence. The thesis consists of two parts which assess the two main renormalization approaches available in modeling turbulence. In particular we will be focusing on the renormalization procedures developed by McComb and others. The first part of this thesis will discuss Renormalization Group (RG) approaches to turbulence, with a focus on applications to reduce the degrees of freedom in a large-eddy simulation. The RG methods as applied to classical dynamical systems will be reviewed in the context of the Navier-Stokes equations describing fluid flow. This will be followed by introducing a functional based formalism of a conditional average first introduced by McComb, Roberts and Watt [Phys. Rev A 45, 3507 (1992)] as a tool for averaging out degrees of freedom needed in an RG calculation. This conditional average is then used in a formal RG calculation applied to the Navier-Stokes equations, originally done by McComb and Watt [Phys. Rev. A 46, 4797 (1992)], and later revised by Mc- Comb and Johnston [Physica A 292, 346 (2001)]. A correction to the summing of the time-integral detailed in the latter work is shown to introduce an extra viscous life-time term to the denominator of the increment to the renormalized viscosity and is shown to have a negligible effect in the numerical calculations. We follow this study by outlining some problems with the previous approach. In particular it is shown that a cross-term representing the interaction between high and low wavenumber modes which was neglected in the previous studies on the grounds that it does not contribute to energy dissipation, does in fact contribute significantly. A heuristic method is then put forward to include the effects of this term in the RG calculation. This leads to results which agree qualitatively with numerical calculations of eddy-viscosities. We finish this part of the thesis with an application of the RG method to the modeling of a passive scalar advected by a turbulent velocity field. The second part of this thesis will begin by reviewing Eulerian renormalized perturbation theory attempts in closing the infinite moment hierarchy introduced by averaging the Navier-Stokes equations. This is followed by presenting a new formulation of the local energy transfer theory (LET) of McComb et. al. [J. Fluid Mech. 245, 279 (1992)] which resolves some problems of previous derivations. In particular we show by the introduction of time-ordering that some previous problems with the exponential representation of the correlator can be overcome. Furthermore, we show that the singularity in the LET propagator equation cancels by way of a counter-term. We end this study by introducing a single-time Markovian closure based on LET which, unlike other Markovian closures, does not rely on any arbitrary parameters being introduced in the theory.

Page generated in 0.206 seconds