Spelling suggestions: "subject:"navierstokes"" "subject:"avierstokes""
51 |
A coupled Navier-Stokes/full-potential analysis for rotorsBerezin, Charles Robert 05 1900 (has links)
No description available.
|
52 |
An implicit finite difference procedure for the laminar, supersonic base flowRoach, Robert Landon 12 1900 (has links)
No description available.
|
53 |
Steady and unsteady internal flow computations via the solution of the compressible navier stokes equations for low mach numbersEkaterinaris, John A. 08 1900 (has links)
No description available.
|
54 |
Steady universal motions of a Navier-Stokes fluidVenable, Samuel Martin 12 1900 (has links)
No description available.
|
55 |
Numerical simulation of 2D flow past a dimpled cylinder using a pseudospectral methodKotovshchikova, Marina 08 January 2007 (has links)
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present thesis. The vorticity-streamfunction formulation of two-dimensional incompressible Navier-Stokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. To handle the singularity at the pole of the unit disk the approach of defining the computational grid proposed by Fornberg was implemented. Two algorithms for solving steady and unsteady problems are presented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton's method. For the time-dependent problem the semi-implicit third order Adams-Bashforth/Backward Differentiation scheme is used. In both algorithms the fully coupled system with two no-slip boundary conditions is solved. Finally numerical result for both steady and unsteady solvers are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver.
|
56 |
Numerical simulation of 2D flow past a dimpled cylinder using a pseudospectral methodKotovshchikova, Marina 08 January 2007 (has links)
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present thesis. The vorticity-streamfunction formulation of two-dimensional incompressible Navier-Stokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. To handle the singularity at the pole of the unit disk the approach of defining the computational grid proposed by Fornberg was implemented. Two algorithms for solving steady and unsteady problems are presented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton's method. For the time-dependent problem the semi-implicit third order Adams-Bashforth/Backward Differentiation scheme is used. In both algorithms the fully coupled system with two no-slip boundary conditions is solved. Finally numerical result for both steady and unsteady solvers are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver.
|
57 |
A numerical solution of the Navier-Stokes equation in a rectangular basinMay, Robert (Robert L.) January 1978 (has links)
vii, 159 leaves : ill., graphs, tables ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1979
|
58 |
A parallel Navier-Stokes solver for natural convection and free surface flowNorris, S. E. January 2000 (has links)
Thesis (Ph. D.)--University of Sydney, 2000. / Title from title screen (viewed Apr. 23, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Dept. of Mechanical Engineering, Faculty of Engineering. Includes bibliography. Also available in print form.
|
59 |
Numerische Untersuchung des Aufstiegsverhaltens von Gasblasen in FlüssigkeitenGaudlitz, Daniel January 2008 (has links)
Zugl.: München, Techn. Univ., Diss., 2008
|
60 |
Analysis and finite element approximation of an optimal shape control problem for the steady-state Navier-Stokes equations /Kim, Hongchul, January 1993 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 139-151). Also available via the Internet.
|
Page generated in 0.0319 seconds