• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of ZSM-5 zeolite from South African fly ash and its application as solid catalyst

Missengue-Na-Moutoula, Roland January 2016 (has links)
Philosophiae Doctor - PhD / Zeolites are widely used as environmentally friendly solid catalysts or catalyst supports in the refining and petrochemical industries. ZSM-5 zeolite is composed of a three-dimensional medium pore structure (openings of 5-5.5 Å) with high silica content, high temperature stability and strong acidity making it a well-known and an established catalyst for several petroleum derived chemical processes such as cracking, aromatic alkylation, disproportionation, Methanol-to-Gasoline, isomerisation, etc. Nowadays, the synthesis of ZSM-5 zeolite from silica, alumina sources and structure directing agents (templates) is well known. Its synthesis is possible from fly ash, which is a low cost source of both silica and alumina. Fly ash is an inorganic residue resulting from the combustion of coal in electricity generating plants, consisting mostly of SiO₂ and Al₂O₃. ZSM-5 zeolite has not been synthesised from South African coal fly ash and the literature reports that fly ash-based ZSM-5 zeolite was synthesised only with tetrapropylammonium (TPA+) as structure directing agent and required an excessive amount of additional silica. The final ZSM-5 product was reported to still contain fly ash mineral phases after synthesis. This prevents the use of fly ash as a ZSM-5 zeolite precursor. Moreover, the synthesis of a high purity ZSM-5 zeolite from fly ash without additional silica has not been yet reported. This study aimed to synthesise high purity ZSM-5 zeolite from South African coal fly ash without additional silica, and with tetrapropylammonium bromide (TPABr), 1,6- hexanediamine (HDA) or 1-propylamine (PA) as structure directing agent. This aim was achieved by first optimising the synthesis of ZSM-5 zeolite from South African coal fly ash based on a formulation reported in the literature with fumed silica and TPABr as additional source of silica and structure directing agent respectively. Thereafter, the obtained optimum conditions were used to synthesise other fly ash-based ZSM-5 zeolite products by substituting TPABr with HDA or PA. Two routes of treating the as-received fly ash prior to the hydrothermal synthesis were applied in order to improve the quality of the final products or reduce the amount of the fumed silica that was used. The first route consisted of treating the as-received fly ash with concentrated H₂SO₄ in order to remove a certain amount of aluminium and increase the Si/Al in the acid treated fly ash solid residue but also remove some other elements such as Fe, Ca, Mg, and Ti which might have an undesirable effect on the product quality. The acid treated fly ash solid residue was used as ZSM-5 precursor with fumed silica as additional silica source and TPABr, HDA or PA as structure directing agent. The ZSM-5 zeolite products that were synthesised from the as-received fly ash as well as from the H₂SO₄ treated fly ash were treated with oxalic acid solution in order to reduce the aluminium content in the final products. The second route consisted of fusing the as-received fly ash with NaOH and treating the powder fused fly ash extract with oxalic acid solution. The obtained fused and oxalic acid treated fly ash extracts were used as ZSM-5 precursors without additional fumed silica and with TPABr, HDA or PA as structure directing agent. ZSM-5 zeolite was synthesised from the as-received South African coal fly ash not only with the commonly used structure directing agent TPABr but also with two other, lower cost structure directing agents, HDA and PA. The synthesis process did not generate any solid waste as fly ash was used as bulk, which could be a way of valorising South African coal fly ash. However, the final products contained some fly ash mineral phases such as mullite and quartz, and had poor physical and chemical properties compared to a commercial H-ZSM-5 zeolite. The treatment of the as-received fly ash with H₂SO4 resulted in fly ash-based ZSM-5 zeolite products with better physical and chemical properties than those of ZSM-5 zeolite products that were synthesised from the as-received fly ash. Moreover, the post-synthesis treatment of the fly ash-based ZSM-5 zeolite products with oxalic acid resulted in an increase in the Si/Al ratio, offering a post-synthesis route to adjust the acidity of the catalysts. However, mullite and quartz phases were still present in the synthesised products. Alternatively, high purity ZSM-5 zeolite was synthesised from the fused and oxalic treated fly ash extracts without additional silica and with TPABr, HDA or PA as structure directing agent. Moreover, these synthesised fly ash-based ZSM-5 zeolite products had similar physical and chemical properties to the commercial H-ZSM-5 zeolite. The synthesised fly ash-based ZSM-5 zeolite products were used as solid catalysts in the Methanol-to-Olefins (MTO) and Nazarov reactions. The ZSM-5 zeolite products that were synthesised from the H₂SO4 treated fly ash as well as fused and oxalic treated fly ash were successfully used as solid catalysts in the MTO and Nazarov reactions. The ZSM-5 zeolite products that were synthesised from the H₂SO₄ treated fly ash presented a similar trend in MTO and Nazarov reactions depending on the structure directing agent that was used, and the ZSM-5 zeolite that was synthesised with HDA as structure directing agent had the highest MTO and Nazarov conversion. However these catalysts deactivated more quickly compared to the commercial H-ZSM-5 zeolite. On the other hand, the zeolites that were synthesised from the fused and oxalic acid treated fly ash had a high initial MTO conversion equivalent to the commercial H-ZSM-5 zeolite. However, they deactivated after 5 h of time on stream due to diffusional constraints, because of their large crystal sizes. This study developed novel routes in the synthesis of high value zeolites from fly ash. ZSM-5 zeolite was synthesised from fly ash with structure directing agents other that TPA+ cation and had acceptable Brønsted acidity and high initial conversion in MTO and Nazarov reactions. This has not been yet reported in the literature. Moreover, for the first time a high purity ZSM-5 zeolite was synthesised from fly ash without additional silica and had similar properties to a commercial H-ZSM-5 zeolite. This constituted a breakthrough in the fly ash-based ZSM-5 zeolite synthesis procedure, which will promote the valorisation of fly ash through ZSM-5 synthesis due to avoiding the addition of silica source in the hydrothermal gel and preventing the presence of fly ash mineral phases in the final products. This study can have a significant economic and environmental impact in South Africa if the synthesis process is scaled up as it provides a potentially cheap and innovative way of using waste for making a high value green and acid catalyst, namely ZSM-5 zeolite that has several catalytic applications; and it promotes the valorisation of South African coal fly ash that is considered by many as waste material. / National Research Foundation (NRF)
2

Enantiospecific Synthesis Of DI- and Linear Triquinanes

Janardhan, Ghodke Neetu January 2012 (has links) (PDF)
Employing a chiral pool strategy, enantiospecific syntheses of di- and triquinanes have been accomplished. α-Campholenaldehyde 95, readily available from the abundantly available monoterpene α-pinene 94, has been utilised as the chiral starting material. To begin with, enantiospecific synthesis of the diquinane 134 has been developed employing Nazarov cyclisation of the cross-conjugated dienone 132 as the key reaction (Scheme 37).71 Synthesis of the dienone 132 was accomplished by selenium dioxide mediated oxidation of the olefinic methyl group in α-campholenyl methyl ether 130, followed by further elaboration of the resultant aldehyde 131. OMe P2O5 MsOH The Nazarov cyclisation strategy has been further extended, as depicted in Scheme 38, for the synthesis of the triquinane enones 145 and 146 via the cross conjugated enone 144.71 The dienone 144 was obtained from the diquinane 136, which is readily available from campholenaldehyde 95 via an intramolecular rhodium carbenoid CH insertion reaction. Of the three methyl groups in campholenaldehyde 95, the olefinic methyl group can easily be functionalised, for example, via allylic oxidation. However, the remaining two tertiary methyl groups are difficult to functionalise, and there is no report in the literature on the utility of these two gem dimethyl groups either for functionalisation or for further elaboration, and remained only as gem dimethyl group in the products. It was conceived that it could be possible to utilise the tertiary methyl carbon for the ring construction via an intramolecular rhodium carbenoid γ-CH insertion reaction. To test the hypothesis, campho¬lenaldehyde 95 was converted into the diazoketone 165. Treatment of the diazoketone 165 with a catalytic amount of rhodium acetate furnished the diquinane 166, via a highly regio-and stereoselective insertion of the intermediate rhodium carbenoid in the CH bond of the tertiary methyl group, which is located cis with respect to the diazoketone, Scheme 39.72 As an application of the Nazarov cyclisation mediated synthesis of the diquinane 134, enantiospecific synthesis of the analogues of capnellenes, ABC and ABD ring systems of aberraranes have been carried out. A methyl cuprate reaction on the enone 134 generated the key intermediate, the ketone 169. A ring-closing metathesis (RCM) based cyclo¬pentannulation has transformed the diquinane 169 into the analogue of capnellene 175, as well as the analogue 197 of the ABC ring system of aberrarane. On the other hand, a Wacker reaction-intramolecular aldol condensation based spirocyclohexannulation transformed the diquinane 169 into an analogue 201 of the ABD ring system of aberrarane, Scheme 40.73 Finally, degradation of the two additional carbon atoms present on the A-ring furnished the ABC and ABD ring systems 235 and 238 of aberrarane, Scheme 41.(For structural formula pl refer the abstract pdf file)

Page generated in 0.099 seconds