• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations On High Rayleigh Number Turbulent Free Convection

Puthenveettil, Baburaj A 06 1900 (has links)
High Rayleigh number(Ra) turbulent free convection has many unresolved issues related to the phenomenology behind the flux scaling, the presence of a mean wind and its effects, exponential probability distribution functions, the Prandtl number dependence and the nature of near wall structures. Few studies have been conducted in the high Prandtl number regime and the understanding of near wall coherent structures is inadequate for $Ra > 10^9$. The present thesis deals with the results of investigations conducted on high Rayleigh number turbulent free convection in the high Schmidt number(Sc) regime, focusing on the role of near wall coherent structures. We use a new method of driving the convection using concentration difference of NaCl across a horizontal membrane between two tanks to achieve high Ra utilising the low molecular diffusivity of NaCl. The near wall structures are visualised by planar laser induced fluorescence. Flux is estimated from transient measurement of concentration in the top tank by a conductivity probe. Experiments are conducted in tanks of $15\times15\times 23$cm (aspect ratio,AR = 0.65) and $10\times10\times 23$cm (AR = 0.435). Two membranes of 0.45$\mu$ and 35$\mu$ mean pore size were used. For the fine membrane (and for the coarse membrane at low driving potentials), the transport across the partition becomes diffusion dominated, while the transport above and below the partition becomes similar to unsteady non penetrative turbulent free convection above flat horizontal surfaces (Figure~\ref{fig:schem}(A)). In this type of convection, the flux scaled as $q\sim \Delta C_w ^{4/3}$,where $\Delta C_w$ is the near wall concentration difference, similar to that in Rayleigh - B\'nard convection . Hence, we are able to study turbulent free convection over horizontal surfaces in the Rayleigh Number range of $\sim 10^- 10 ^$ at Schmidt number of 602, focusing on the nature and role of near wall coherent structures. To our knowledge, this is the first study showing clear images of near wall structures in high Rayleigh Number - high Schmidt number turbulent free convection. We observe a weak flow across the membrane in the case of the coarser membrane at higher driving potentials (Figure \ref(B)). The effect of this through flow on the flux and the near wall structures is also investigated. In both the types of convection the near wall structure shows patterns formed by sheet plumes, the common properties of these patterns are also investigated. The major outcomes in the above three areas of the thesis can be summarised as follows \subsection* \label \subsubsection* \label The non-dimensional flux was similar to that reported by Goldstein\cite at Sc of 2750. Visualisations show that the near wall coherent structures are line plumes. Depending on the Rayleigh number and the Aspect ratio, different types of large scale flow cells which are driven by plume columns are observed. Multiple large scale flow cells are observed for AR = 0.65 and a single large scale flow for AR= 0.435. The large scale flow create a near wall mean shear, which is seen to vary across the cross section. The orientation of the large scale flow is seen to change at a time scale much larger than the time scale of one large scale circulation The near wall structures show interaction of the large scale flow with the line plumes. The plumes are initiated as points and then gets elongated along the mean shear direction in areas of larger mean shear. In areas of low mean shear, the plumes are initiated as points but gets elongated in directions decided by the flow induced by the adjacent plumes. The effect of near wall mean shear is to align the plumes and reduce their lateral movement and merging. The time scale for the merger of the near wall line plumes is an order smaller than the time scale of the one large scale circulation. With increase in Rayleigh number, plumes become more closely and regularly spaced. We propose that the near wall boundary layers in high Rayleigh number turbulent free convection are laminar natural convection boundary layers. The above proposition is verified by a near wall model, similar to the one proposed by \cite{tjfm}, based on the similarity solutions of laminar natural convection boundary layer equations as Pr$\rightarrow\infty$. The model prediction of the non dimensional mean plume spacing $Ra_\lambda^~=~\lambda /Z_w~=~91.7$ - where $Ra_\lambda$ is the Rayleigh number based on the plume spacing $\lambda$, and $Z_w$ is a near wall length scale for turbulent free convection - matches the experimental measurements. Therefore, higher driving potentials, resulting in higher flux, give rise to lower mean plume spacing so that $\lambda \Delta C_w^$ or $\lambda q^$ is a constant for a given fluid. We also show that the laminar boundary layer assumption is consistent with the flux scaling obtained from integral relations. Integral equations for the Nusselt number(Nu) from the scalar variance equations for unsteady non penetrative convection are derived. Estimating the boundary layer dissipation using laminar natural convection boundary layers and using the mean plume spacing relation, we obtain $Nu\sim Ra^$ when the boundary layer scalar dissipation is only considered. The contribution of bulk dissipation is found to be a small perturbation on the dominant 1/3 scaling, the effect of which is to reduce the effective scaling exponent. In the appendix to the thesis, continuing the above line of reasoning, we conduct an exploratory re-analysis (for $Pr\sim 1$) of the Grossman and Lohse's\cite scaling theory for turbulent Rayleigh - B\'enard convection. We replace the Blasius boundary layer assumption of the theory with a pair of externally forced laminar natural convection boundary layers per plume. Integral equations of the externally forced laminar natural convection boundary layer show that the mixed convection boundary layer thickness is decided by a $5^{th}$ order algebraic equation, which asymptotes to the laminar natural convection boundary layer for zero mean wind and to Blasius boundary layer at large mean winds. \subsubsection*{Effect of wall normal flow on flux and near wall structures} \label{sec:effect-wall-normal} For experiments with the coarser($35\mu$) membrane, we observe three regimes viz. the strong through flow regime (Figure~\ref{fig:schem}(b)), the diffusion regime (Figure \ref{fig:schem}(a)), and a transition regime between the above two regimes that we term as the weak through flow regime. At higher driving potentials, only half the area above the coarser membrane is covered by plumes, with the other half having plumes below the membrane. A wall normal through flow driven by impingement of the large scale flow is inferred to be the cause of this (Figure \ref{fig:schem}(b)). In this strong through flow regime, only a single large scale flow circulation cell oriented along the diagonal or parallel to the walls is detected. The plume structure is more dendritic than the no through flow case. The flux scales as $\Delta C_w^n$, with $7/3\leq n\leq 3$ and is about four times that observed with the fine membrane. The phenomenology of a flow across the membrane driven by the impingement of the large scale flow of strength $W_*$, the Deardorff velocity scale, explains the cubic scaling. We find the surprising result that the non-dimensional flux is smaller than that in the no through flow case for similar parameters. The mean plume spacings in the strong through flow regime are larger and show a different Rayleigh number dependence vis-a-vis the no through flow case. Using integral analysis, an expression for the boundary layer thickness is derived for high Schmidt number laminar natural convection boundary layer with a normal velocity at the wall. (Also, solutions to the integral equations are obtained for the $Sc\sim 1$ case, which are given as an Appendix.) Assuming the gravitational stability condition to hold true, we show that the plume spacing in the high Schmidt number strong through flow regime is proportional to $\sqrt{Z_w\,Z{_{v_i}}}$, where $Z{_{v_i}}$ is a length scale from the through flow velocity. This inference is fairly supported by the plume spacing measurements At lower driving potentials corresponding to the transition regime, the whole membrane surface is seen to be covered by plumes and the flux scaled as $\Delta C_w^{4/3}$. The non-dimensional flux is about the same as in turbulent free convection over flat surfaces if $\frac{1}{2}\Delta C $ is assumed to occur on one side of the membrane. This is expected to occur in the area averaged sense with different parts of the membrane having predominance of diffusion or through flow dominant transport. At very low driving potentials corresponding to the diffusion regime, the diffusion corrected non dimensional flux match the turbulent free convection values, implying a similar phenomena as in the fine membrane. \subsubsection*{Universal probability distribution of near wall structures} \label{sec:univ-prob-distr} We discover that the probability distribution function of the plume spacings show a standard log normal distribution, invariant of the presence or the absence of wall normal through flow and at all the Rayleigh numbers and aspect ratios investigated. These plume structures showed the same underlying multifractal spectrum of singularities in all these cases. As the multifractal curve indirectly represents the processes by which these structures are formed, we conclude that the plume structures are created by a common generating mechanism involving nucleation at points, growth along lines and then merging, influenced by the external mean shear. Inferring from the thermodynamic analogy of multifractal analysis, we hypothesise that the near wall plume structure in turbulent free convection might be formed so that the entropy of the structure is maximised within the given constraints.
2

Turbulent Mixed Convection

Ramesh Chandra, D S 04 1900 (has links)
Turbulent mixed convection is a complicated flow where the buoyancy and shear forces compete with each other in affecting the flow dynamics. This thesis deals with the near wall dynamics in a turbulent mixed convection flow over an isothermal horizontal heated plate. We distinguish between two types of mixed convection ; low-speed mixed convection (LSM) and high-speed mixed convection (HSM). In LSM the entire boundary layer, including the near-wall region, is dominated by buoyancy; in HSM the near-wall region, is dominated by shear and the outer region by buoyancy. We show that the value of the parameter (* = ^ determines whether the flow is LSM or HSM. Here yr is the friction length scale and L is the Monin-Obukhov length scale. In the present thesis we proposed a model for the near-wall dynamics in LSM. We assume the coherent structure near-wall for low-speed mixed convection to be streamwise aligned periodic array of laminar plumes and give a 2d model for the near wall dynamics, Here the equation to solve for the streamwise velocity is linear with the vertical and spanwise velocities given by the free convection model of Theerthan and Arakeri [1]. We determine the profiles of streamwise velocity, Reynolds shear stress and RMS of the fluctuations of the three components of velocity. From the model we obtain the scaling for wall shear stress rw as rw oc (UooAT*), where Uoo is the free-stream velocity and AT is the temperature difference between the free-stream and the horizontal surface.A similar scaling for rw was obtained in the experiments of Ingersoll [5] and by Narasimha et al [11] in the atmospheric boundary layer under low wind speed conditions. We also derive a formula for boundary layer thickness 5(x) which predicts the boundary layer growth for the combination free-stream velocity Uoo and AT in the low-speed mixed convection regime.

Page generated in 0.0887 seconds