• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radio observation of the Gum Nebula Region

Woermann, Beate January 1997 (has links)
This thesis describes the results of an investigation of the physical properties of the Gum Nebula. For this investigation a radio continuum map of the region was made at 2326 MHz and resolution ⅓° with the HartRAO antenna. This map was used to generate spectral index images and an infrared to radio flux density ratio (IRR) image. The latter image shows that the IRR of the nebula is in the range 20 to 250, identifying it as an old SNR. Several spectral index images of this region were generated using two different methods, one based on the isolation of the nebula from its background radiation, the other based on TT-plots (Turtle et al., 1962). The two methods yield similar results, which show that the nebula has a thermal shell with a non-thermal region in its interior. Below the galactic plane the thermal region dominates and above the plane the nonthermal region. These results suggest a model of an old SNR with an H II region shell. Spectral line observations of hydrogen recombination lines and hydroxyl (OH) were made with the HartRAO and the Mopra telescopes. The detection of hydrogen recombination lines at four positions in the thermal regions of the nebula give electron temperatures and emission measures in the ranges 4000 to 6000 K and 220 to 460 pc.cm⁻⁶ respectively. The turbulent velocities are of the order of 20 km/s. A search for shocked OH lines at 1667 MHz and 1720 MHz in the Gum Nebula gave results that were negative, but numerous unshocked 1667 MHz OH lines were detected. The latter were used in a test for an expansion of the nebula. The most plausible fit to the data gives an expansion centre at l = 260.5°, b = -2.5° and at a distance of 0.7 kpc from us. The front face angular radius and expansion velocity are 10.5° and 16 km/s respectively. The back face angular radius and expansion velocity are 8.50 and 7 km/s respectively.

Page generated in 0.1108 seconds