• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variação da ordem ótima de modelo autorregressivo com a força de contração muscular e a duração do eletromiograma. / Variation of optimal autoregressive order with electromyogram length and contraction force

Romaro, Cecília 02 April 2015 (has links)
Os sinais de eletromiografia de agulha podem ser modelados por um sistema linear invariante no tempo (SLIT). A pergunta é: Quantos coeficientes são necessários para tal? O presente mestrado estuda, para sinais de eletromiografia de agulha gravados sob as mesmas condições experimentais, como varia o número ótimo de coeficientes autorregressivos com o comprimento das épocas e com a força de contração muscular concomitantemente. O estudo foi realizado tendo como base sinais de 10%, 25%, 50% e 80% da máxima contração voluntária (MCV) e tendo épocas de 500ms, 250ms, 100ms, 50ms e 25ms de seis indivíduos normais. Desta forma, uma função densidade de probabilidade é sugerida para a ordem do modelo autorregressivo que melhor descreva o sinal de eletromiografia obtido a uma força de contração específica e que tenha uma duração de época definida. / Needle electromyography signals (EMG) can be modeled by a linear time invariant system (LTI). The posed question is How many coefficients are needed for an adequate modeling? This Masters dissertation studies how the optimal number of autoregressive coefficients changes concomitantly with the epoch length and the muscle contraction force for needle electromyography signals recorded under the same experimental conditions. The study was conducted on signals from six normal individuals at 10%, 25%, 50% and 80% of the maximum voluntary contraction and epoch lengths of 500ms, 250ms, 100ms, 50ms and 25ms. Thus, a probability density function is suggested for the autoregressive model order that best describes the electromyographic signal obtained at a specific \"contraction force\" and has a defined \"epoch length\".
2

Variação da ordem ótima de modelo autorregressivo com a força de contração muscular e a duração do eletromiograma. / Variation of optimal autoregressive order with electromyogram length and contraction force

Cecília Romaro 02 April 2015 (has links)
Os sinais de eletromiografia de agulha podem ser modelados por um sistema linear invariante no tempo (SLIT). A pergunta é: Quantos coeficientes são necessários para tal? O presente mestrado estuda, para sinais de eletromiografia de agulha gravados sob as mesmas condições experimentais, como varia o número ótimo de coeficientes autorregressivos com o comprimento das épocas e com a força de contração muscular concomitantemente. O estudo foi realizado tendo como base sinais de 10%, 25%, 50% e 80% da máxima contração voluntária (MCV) e tendo épocas de 500ms, 250ms, 100ms, 50ms e 25ms de seis indivíduos normais. Desta forma, uma função densidade de probabilidade é sugerida para a ordem do modelo autorregressivo que melhor descreva o sinal de eletromiografia obtido a uma força de contração específica e que tenha uma duração de época definida. / Needle electromyography signals (EMG) can be modeled by a linear time invariant system (LTI). The posed question is How many coefficients are needed for an adequate modeling? This Masters dissertation studies how the optimal number of autoregressive coefficients changes concomitantly with the epoch length and the muscle contraction force for needle electromyography signals recorded under the same experimental conditions. The study was conducted on signals from six normal individuals at 10%, 25%, 50% and 80% of the maximum voluntary contraction and epoch lengths of 500ms, 250ms, 100ms, 50ms and 25ms. Thus, a probability density function is suggested for the autoregressive model order that best describes the electromyographic signal obtained at a specific \"contraction force\" and has a defined \"epoch length\".

Page generated in 0.0733 seconds