• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 14
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 27
  • 26
  • 21
  • 21
  • 19
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Výzkum záporných elektrod pro lithno-iontové akumulátory / Development of negative electrodes for lithium-ions batteries

Drahokoupil, Petr January 2013 (has links)
This thesis deals with lithiation of negative electrode li-ion batteries. In this thesis is used several electrode materials: carbon, FeCl3, lithiated carbon electrodes and silicon carbide. Reduction of irreversible capacity lithium-ion batteries leads to increased capacity and also we can use new materials as a positive electrode. Thesis deals with the differences in the properties of materials using lithiation and their use in practice
42

Příčiny předčasné ztráty kapacity olověných akumulátorů pracujících v PSoC režimu hybridních elektrických vozidel / Causes of Premature Capacity Loss of Lead-Acid Accumulators Operating in PSoC Mode in Hybrid Electric Vehicles

Bilko, Radek January 2014 (has links)
This thesis is completion of whole stage of researches and it is a result of existing need of increase efficiency, utilization rate and service life of lead acid batteries VRLA planned for utilization in hybrid electric vehicles in mode of partial state-of-charge PSoC. During the application of mode PSoC at lead acid battery occurs irreversible sulfation of negative electrodes and thus to loss their charging capability. This phenomenon, according to the latest trend called PCL3, isn´t connected with subsequently referred effects PCL1, PCL2, show up on positive electrodes. Result of this thesis is finding a new types of additives, determine their optimum amount and size in such a way that innovated composition of negative active materials be able to resist sulfation of negative electrode during operation in mode PSoC. Part of the effort to clarify actions ongoing on negative active material and causes non-returnable sulfation electrodes is also monitoring of structural changes electrode active material by using environmental scanning electron microscope, which helped to clarify processes related with loss of capacity in mode PSoC. Special attention during reserches was focused on study of the properties contact layers between collector and electrodes active material and itself active materials lead-acid battery druring exploitation. There were gain new information about influence repeated cycling of (charging, discharging) the critical area of the electrodes. Measurements was carried out on specially prepared experimental electrodes DC Difference Method, this enabled obtain data in situ.
43

Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications

Martine, Milena 14 June 2017 (has links)
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss. Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product. Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries. / Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend. Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus. Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln.
44

Kompozitní elektrodové materiály pro lithium-iontové akumulátory na bázi LiFePO4 / Composite electrode materials for lithium-ion batteries based on LiFePO4 prepared using GAC method

Vilhelm, Ondřej January 2011 (has links)
Presented work investigates the problem of secondary lithium-ion cells and the different available cathode materials. We have prepared samples of LiFePO4 with the addition of different kinds of carbon materials such as Super P, Vulcan and expanded graphite. We have always created the sample with and without surfactant. Developed samples were compared by measuring electrochemical methods (cyclic voltammetry, charge and discharge cycles and impedance spectroscopy). We also modeled the three-point cell for measuring electrochemical electrode materials.
45

Vliv vodivých keramik na životnost olověných akumulátorů / Influence of conductive ceramics on the life of lead acid batteries

Tobolák, Jakub January 2014 (has links)
This thesis is focused on lead-acid batteries used in hybrid electric vehicles. These cells work in specific conditions, particularly under partial charge referred to as PSOC. This fact is responsible for the premature loss of capacity cell lead-acid batteries and their short lifetime. The task of this thesis is to examine the effect of conductive ceramics as possible additives to the negative electrode active materials of lead-acid battery cells operating in a PSOC, in order to prolong their life.
46

Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studies

Gao, Suning 21 September 2020 (has links)
The environmental concerns over the use of fossil fuels, and their resource constraints, as well as energy security concerns, have spurred great interest in generating electric energy from renewable sources. Solar and wind energy are abundant and potentially readily available. However, the generation of sustainable energies is generally intermittent and these energies have geographical limits which are relative to current large-scale energy generation facilities. To smooth out the intermittency of renewable energy production, low-cost electrical energy storage (EES) devices are becoming highly necessary. Among these EES technologies, lithium ion batteries are one of the most promising EES devices in terms of the characteristics of high gravimetric, volumetric energy density and environmentally friendly compared to lead-acid batteries and Ni-Cd batteries. Other advantages of Li-ion batteries are the ability of being recharged hundreds of times and high stability. Moreover, the dramatically growing market share of hybrid electrical and electrical vehicles in automobiles has motivated the development of high energy and power density LIBs with high mass loading. However, there are still several remaining challenges in LIBs for their further application in grid-scale ESSs. One of the global issues to date is the high costs including the cost of raw materials such as lithium and cobalt, production, machining, and transportation, etc. In addition, the increasing energy demand thereby leads to the pressures on the resource supply chains and thus increasing the cost of LIBs. Therefore, it is urgent to find a complementary or alternative EES device in a short term to satisfy the growing energy demand. Under the background of fast development of LIBs technology as well as the establishment of Li chemistry fundamentals in the last 40 years, rechargeable battery systems utilizing Na element have been extensively studied to develop less expensive and more sustainable ESSs. The sodium resource is abundantly existed in the planet. According to the periodic table, sodium is the most possible alternative to lithium, because it has the similar chemical and physical properties towards to lithium. As a consequence, the established fundamentals in LIBs can be reasonably analogized to SIBs. Moreover, Sodium is readily available from various sources-foods that contain sodium naturally, foods containing salt and other sodium-containing ingredients. Therefore, The study of SIBs technology and sodium chemistry are gaining increasing interests and attentions both in the scientific researchers and battery industry. However, theoretically speaking, the energy density of SIBs is lower than that of LIBs by using same electrode materials because sodium is more than 3 times heavier than Li as well as the standard electrode potential of Na (-2.71 V) is higher than Li (-3.04 V). Therefore, SIBs are not thought as an ideal candidate to substitute LIBs in the fields of small or middle-size portable devices, but are more favorable in a large grid support where the operation cost is the primary choice. Negative electrode is important component in a single cell. Exploring negative electrode materials with high electrochemical performance in LIBs and SIBs is indeed required for fulfilling the spreading energy demand. Among various negative electrode materials, layered transition metal sulfides (MSs) are reckoned as a promising class with high theoretical specific capacity and power capability due to their intrinsically layered structure which is beneficial to the diffusion of Li+ and Na+ . However, layered transition metal sulfides are suffering from intrinsically poor electrical conductivity, volume changes, high irreversibility and sluggish kinetics during Li+ /Na+ storage process. To address these issues, numerous strategies are applied to explore high performance LIBs and SIBs negative electrode materials in this PHD thesis. / Die ökologischen Bedenken hinsichtlich der Nutzung fossiler Brennstoffe und deren Ressourcenbeschränkungen sowie Bedenken hinsichtlich der Energiesicherheit haben großes Interesse an der Erzeugung elektrischer Energie aus erneuerbaren Quellen geweckt. Sonnen- und Windenergie sind im Überfluss vorhanden und potenziell leicht verfügbar. Die Erzeugung nachhaltiger Energien ist jedoch in der Regel intermittierend, und diese Energien haben geographische Grenzen, die im Vergleich zu den derzeitigen großen Energieerzeugungsanlagen relativ begrenzt sind. Um die Unterbrechungen in der Produktion erneuerbarer Energien auszugleichen, werden kostengünstige elektrische Energiespeicher (EES) dringend notwendig. Unter diesen EES-Technologien sind Lithium-Ionen-Batterien eines der vielversprechendsten EES-Geräte hinsichtlich der Eigenschaften einer hohen gravimetrischen, volumetrischen Energiedichte und umweltfreundlich im Vergleich zu Blei-Säure-Batterien und Ni-Cd-Batterien. Weitere Vorteile von Lithium-Ionen-Batterien sind die Fähigkeit, hunderte Male wieder aufgeladen werden zu können, und die hohe Stabilität. Darüber hinaus hat der dramatisch wachsende Marktanteil von Hybrid- und Elektrofahrzeugen in Automobilen die Entwicklung von LIBs mit hoher Energie- und Leistungsdichte und hoher Massenbelastung motiviert. Es gibt jedoch noch einige Herausforderungen in den LIBs, die für die weitere Anwendung in den ESSs im Rastermaßstab erforderlich sind. Eine der bisherigen globalen Fragen sind die Gesamtkosten einschließlich der Kosten für Rohstoffe wie Lithium und Kobalt, Produktion, Bearbeitung und Transport usw. Darüber hinaus führt die steigende Energienachfrage dadurch zu einem Druck auf die Ressourcenversorgungsketten und damit zu einer Verteuerung der LIBs. Daher ist es dringend erforderlich, kurzfristig eine ergänzende und alternative EES-Technologie zu finden, um den wachsenden Energiebedarf zu decken. Vor dem Hintergrund der schnellen Entwicklung der LIBs-Technologie sowie der Etablierung der Grundlagen der Li-Chemie in den letzten 40 Jahren wurden wiederaufladbare Batteriesysteme, die das Na-Element verwenden, umfassend untersucht, um kostengünstigere und nachhaltigere ESSs zu entwickeln. Die Natriumressource ist auf der Erde im Überfluss vorhanden. Nach dem Periodensystem ist Natrium die möglichste Alternative, da es die ähnlichen chemischen und physikalischen Eigenschaften von Lithium hat. Folglich lassen sich die etablierten Grundlagen der LIBs in vernünftiger Weise mit denen der SIBs vergleichen. Darüber hinaus ist Natrium aus verschiedenen Quellen leicht erhältlich - aus Lebensmitteln, die von Natur aus Natrium enthalten, aus Lebensmitteln, die Salz und andere natriumhaltige Zutaten enthalten. Daher gewinnt das Studium der SIBs-Technologie und Natriumchemie sowohl in der wissenschaftlichen Forschung als auch in der Batterieindustrie zunehmend an Interesse und Aufmerksamkeit. Theoretisch gesehen ist jedoch die Energiedichte von SIBs bei Verwendung der gleichen Elektrodenmaterialien niedriger als die von LIBs, da Natrium mehr als dreimal schwerer als Li ist und das Standardelektrodenpotential von Na (-2,71 V) höher als Li (-3,04 V) ist. Daher werden SIBs nicht als idealer Kandidat für den Ersatz von LIBs im Bereich kleiner oder mittelgroßer tragbarer Geräte angesehen, sondern sie sind günstiger bei einer großen Netzunterstützung, bei der die Betriebskosten die primäre Wahl sind. Die negative Elektrode ist ein notwendiger und wichtiger Teil in einer einzelnen Zelle. In der Tat ist es zur Erfüllung des sich ausbreitenden Energiebedarfs erforderlich, negative Elektroden-Materialien mit hoher elektrochemischer Leistung in LIBs und SIBs zu untersuchen. Unter den verschiedenen Materialien für negative Elektroden gelten geschichtete Übergangsmetallsulfide (MS) als eine vielversprechende Klasse mit hoher theoretischer spezifischer Kapazität und Leistungskapazität aufgrund ihrer intrinsisch geschichteten Struktur, die der Diffusion von Li+ und Na+ förderlich ist. Allerdings leiden schichtförmige Übergangsmetallsulfide unter inhärent schlechter elektrischer Leitfähigkeit, Volumenänderungen, hoher Irreversibilität und träger Kinetik während des Li+ /Na+ -Speicherprozesses. Um diese Probleme anzugehen, werden in dieser Doktorarbeit zahlreiche Strategien zur Untersuchung von Hochleistungs-LIBs und SIBs für negative Elektrodenmaterialien angewandt.
47

Použití keramik v kladné aktivní hmotě olověných akumulátorů / The use of ceramics in the positive active mass of lead-acid batteries

Bureš, Michal January 2015 (has links)
Premature loss of capacity, mode of partial charge, additives, negative electrode, lead acid battery, lead-acid battery cycling, hybrid electric vehicle, traction battery, ebonex, titanium dioxide

Page generated in 0.1225 seconds