Spelling suggestions: "subject:"degative ion resonance"" "subject:"begative ion resonance""
1 |
Development and Benchmarking of Hermitian and non-Hermitian Methods for Negative Ion ResonancesKolathingal Thodika, Mushir ul Hasan, 0000-0002-6837-9710 January 2022 (has links)
Low energy electron (LEE) driven chemistry underpins a wide range of interdisciplinary fields, including radiation biology, redox chemistry, astrochemistry and biomaterial design. A growing interest in the chemistry of LEEs concerns the radiative damage to DNA. Studies have found that LEEs can induce single and double-strand breaks in DNA by forming a negative ion resonance (NIR). These processes are remarkably site-specific and have been utilized to synthesize radiosensitizers, which aid in identifying target cells in hypoxic tumors in radiation therapy. Despite the prevalence of LEE-induced reactions, computational studies of such processes are limited compared to thermal and photochemical reactions. The relative scarcity in computational studies of LEE-induced reactions stems from the difficulties in the theoretical treatment of NIRs. In our work, we report new developments on the application of quantum chemical methods to NIRs. We demonstrate that the combination of approaches developed for resonances with multi reference electronic structure methods enables the computation of various types of NIRs in a single calculation. Additionally, we show that multi-reference methods can also quantify the mixing between NIRs. It is observed that the mixing between resonances can have significant consequences on their lifetimes. We also report the development of a new technique, the continuum remover Feshbach projection operator approach, which uses the conventional methods developed for bound states to characterize resonances. We show that this new approach is straightforward to implement with standard electronic structure packages, it is efficient, and provides promising results. / Chemistry
|
Page generated in 0.0726 seconds