• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of ceramic uses for nepheline syenite tailings /

Wilson, Robert Charles January 1958 (has links)
No description available.
2

The nepheline syenites and pegmatites of Mount Royal, Montreal. QUE.

Finley, Frederick L. January 1924 (has links)
No description available.
3

The red syenite of the Pilansberg complex as a nepheline source for the South African ceramics and glass industry

Pantshi, Bukiwe. January 2006 (has links)
Thesis (M. Sc.)(Geology)--University of Pretoria, 2006. / Includes bibliographical references. Available on the Internet via the World Wide Web.
4

Thallium-Rubidium-Potassium Relationship in Nepheline Syenite

Lai, Sing Zeon 05 1900 (has links)
<p> Nepheline syenite samples were collected from the Bancroft and Blue Mountain areas, Ontario, Canada, and were analysed for K, Rb, and Tl contents by atomic absorption spectrophotometry. The results for these elements and the corresponding K/Rb, K/Tl and Rb/Tl ratios were compared with those of nepheline syenites in various localities, and were found to be similar.</p> <p> The Tl, Rb, K contents and the K/Rb, K/Tl and Rb/Tl ratios in this study were determined to be 825 ppb, 110 ppm, 3.28%, 298, 4.11x10^4 and 135 respectively for the Bancroft nepheline syenite gneisses, and 574ppb, 93ppm, 3.28%, 353, 5.71x10^4 and 162 respectively for the Blue Mountain nepheline syenites. From these data, the nepheline syenite rocks in this study were probably originated as continental plutonics.</p> / Thesis / Bachelor of Science (BSc)
5

Mineralogical investigation of the Nepheline syenite Franspoort, South Africa for beneficiation

Gryffenberg, Lelanie 18 August 2010 (has links)
Mamelodi Quarries, which currently mine the Franspoort nepheline syenite, produces aggregate and crusher sand for the local building industry. The mine is located northeast of Pretoria, South Africa on the road to Cullinan. The aim of this study is to investigate the use of the Franspoort nepheline syenite as an alumina and alkali resource for the glass and ceramics industry at Mamelodi Quarries, and to evaluate the production of a concentrate of zircon and rare earth elements as economic by-products. International standards require a nepheline product with a ferric oxide content of less than 0.35 weight percent. The Franspoort nepheline syenite contains 3.37 weight percent of ferric oxide. The iron-containing minerals present are aegirine, aegirine-augite, magnetite, ilmenite and pyrite. The removal of iron-bearing minerals was attempted by high-intensity wet magnetic separation, low-intensity dry magnetic separation, spiral gravity separation, and heavy liquid separation to produce a saleable nepheline product. This product is the cleaned final concentrate, of the different separation tests, which contains the lowest iron concentration for application in the glass and ceramic industry. The mineral assemblage was determined with a petrographic study as well as X-ray diffraction and electron microprobe analyses. Material from the different separation tests was analysed with X-ray fluorescence to obtain the chemical composition and to evaluate the final iron content of the nepheline product. The dry magnetic separation method produced the best results. The nepheline product has a ferric oxide content of 0.68 weight percent compared to the starting concentration of 3.37 weight percent. The ferric oxide concentration is, however, above the accepted levels for the glass and ceramics industry. The ferric oxide content is attributed to small iron-rich mineral inclusions, which are locked in feldspar and nepheline. The final nepheline product is not suitable for the use in the glass and ceramic industry. Zircon was concentrated the best by the use of heavy liquid separation. Zircon is in most cases locked in the minerals albite, microcline, and nepheline. The rare earth elements are mostly associated with zircon and fluorite and therefore it will not be viable to produce it as a by-product. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Geology / unrestricted
6

Mineralogia e petrologia de enclaves microgranulares de nefelina sienitos do Maciço Alcalino Poços de Caldas (MG-SP) / Mineralogy and petrology of microgranular enclaves of Poços de Caldas Alkaline Massif\'s nepheline syenites (MG-SP)

Ricardi, Bruna Passarelli 26 April 2010 (has links)
Os nefelina sienitos miasquíticos a intermediários do Maciço Alcalino Poços de Caldas (MAPC), em especial o tipo da Pedreira, possuem enclaves microgranulares félsicos e máficoultramáficos intrigantes. O nefelina sienito da Pedreira (NeS) pode ser divido em duas fácies texturais: uma de granulação média-grossa a grossa (NeS-g), outra de granulação média-fina a fina (NeS-f). O NeSg possui, mais comumente, enclaves microgranulares félsicos (EMF), de composição fonolítica. Estes enclaves podem envolver enclaves menores, máfico-ultramáficos, gerando enclaves duplos. O NeSf apresenta mais tipicamente enclaves microgranulares máfico-ultramáficos (EMM), ora com feições de rompimento em estado plástico, ora com bordas angulosas e lineares. Diques de composição fonolítica cortam o NeS-g. As rochas estudadas neste trabalho são constituídas por nefelina, feldspato alcalino e clinopiroxênio. Como fase acessória, têm-se titanita, magnetita e biotita-flogopita. Apatita ocorre também como mineral acessório, com exceção para o NeS-g. No NeS-g, no NeS-f e nos EMF, o clinopiroxênio possui duas fases texturais: uma prismática, verde (egirina-augita) que também pode ter núcleo róseo/incolor (diopsídio, mais comum no NeS-f e no EMF); outra fibrosa, também verde, porém fortemente pleocroica (egirina). Os EMM são constituídos essencialmente por diopsídio, com M(médio)~80. Quando porfirítico, o enclave possui macrocristais de diopsídio róseo/incolor (#mg~0,9) imersos numa matriz de diopsídio verde (#mg~0,8), ambos prismáticos. Magnetita dos NeS possui pouca variação, com teores baixos de Ti, diferente da magnetita dos enclaves. A assinatura química da nefelina dos EMM é equivalente à do NeS-f, com mais Fe3+ e menos K em relação ao NeS-g. Feldspato alcalino tende a ser mais potássico nos EMF e apresenta maior variação composicional nos EMM (Ab10-33Or72-80). Biotita está presente somente nos EMF e flogopita somente nos EMM. O padrão de elementos terras raras (ETR) do clinopiroxênio róseo/incolor do NeS-f é semelhante ao do EMM. Egirina-augita e egirina possuem enriquecimento em ETR pesados. Os enclaves máfico-ultramáficos são ultrabásicos, classificados como tefritos/basanitos (Le Bas et al., 1986) ou nefelinitos/ankaratritos (De La Roche et al., 1980), enquanto as rochas félsicas são intermediárias, correspondentes a fonolitos ou nefelina sienitos, dependendo da granulometria. Os diques e o NeS-f são peralcalinos, enquanto o EMF, o NeS-g e os EMM são peralcalinos/metaluminosos. As rochas ultramáficas/ultrabásicas, aflorantes na porção noroeste do Maciço Alcalino Poços de Caldas (Ulbrich et al., 2002), possuem padrões de ETR que indicam que estas rochas podem estar geneticamente ligadas aos enclaves máfico-ultramáficos. De uma forma geral, as características estruturais, texturais e químicas das rochas estudadas corroboram com a hipótese de coexistência de pelo menos dois magmas distintos: um félsico sienítico insaturado outro ultramáfico/ultrabásico, que teriam interagido e formado os os EMM e o NeSf, principalmente. Enquanto num estágio posterior de cristalização do magma, porém ainda em estado plástico, o dique teria se colocado, com parcial absorção da rocha pelos nefelina sienitos, formando os EMF. / The miaskitic to intermediate nepheline syenites of Poços de Caldas Alkaline Massif, especially the Pedreira type, have intriguing felsic and mafic-ultramafic microgranular enclaves. The Pedreiras nepheline syenite type (NeS) can be divided into two textural facies: one that is medium-coarse to coarse grained (NeS-c) and the other that varies between medium-fine to fine grained (NeS-f). It is common among the NeS-c microgranular felsic enclaves (MFE) with phonolitic composition. These enclaves may develop smaller ones maficultramafic, generating double enclaves. The NeS-f usually presents mafic-ultramafic enclaves (MME), sometimes showing disrupted features in plastic stage and sometimes angular and linear edges. Phonolitic dykes cut the NeS-c. The rocks studied in this work are formed by nepheline, alkali-feldspar and clinopyroxene. The accessory phase is characterized by titanite, magnetite and biotite-phlogopite. In exception to the NeS-c, apatite also occurs as an accessory mineral. In the NeS-c, NeS-f and MFE, the clinopyroxene presents two textural phases: a green prismatic one (aegirine-augite), which also may have a pinkish/colourless core (diopsyde, which is common in the NeS-f and MFE); the other one is fibrous, also green, however with strongly pleocroism (aegirine). Essencially, the MME are formed by diopsyde, with M(medium)~80. When porphyritic, the enclave has macrocrystals of pinkish/colourless diopsyde (with mg#~0,9) in a green diopsyde (mg#~0,8) matrix, both prismatic. In the NeS, the magnetite varies little: with low levels of Ti, differently from the enclaves magnetite. The chemical signature of the nepheline in the MME equals to the one present in the NeS-f and has more Fe3+ and less K when compared to the NeS-c. The alkaline feldspar in the MFE has more potassium in its structure and presents a higher compositional variation in the MME (Ab10-33Or72-80). It is also noticeable that biotite is a component only to the MFE, while the phlogopite occurs in the MME. The rare earth elements (REE) pattern in the pinkish/colourless clinopyroxene of the NeS-f is similar to the MME. Both aegirine-augite and aegirine present an enrichment regarding the heavy REE. The MME are ultrabasic, classified as tephrite/basanite (Le Bas et al., 1986) or nephelinite/ankaratrites (De La Roche et al., 1980), while the felsic rocks are intermediate, corresponding to phonolite and nepheline syenite, depending on the grain size. The dykes and the NeS-f are peralkaline, while the MFE, NeS-c and the MME are peralkaline/metaluminous. The ultrabasic/ultrapotassic rocks, outcropping in the northwestern portion of the PCAM (Ulbrich et al., 2002), have REE patterns wich indicate that these rocks may be genetically related to mafic-ultramafic enclaves. Generally, the structural, textural and chemical signatures of the rocks studied in this work confirm the hypothesis of the coexistence of at least two different magmas: a syenitic undersaturated felsic one and a ultramafic/ultrabasic one, and their interaction resulted in the MME and, above all, the NeS-f. While in a late stage of magma cristalization, but still in the plastic state, the dike would be placed, with partial absorption of the rock by the nepheline syenite, resulting in the EMF.
7

Mineralogia e petrologia de enclaves microgranulares de nefelina sienitos do Maciço Alcalino Poços de Caldas (MG-SP) / Mineralogy and petrology of microgranular enclaves of Poços de Caldas Alkaline Massif\'s nepheline syenites (MG-SP)

Bruna Passarelli Ricardi 26 April 2010 (has links)
Os nefelina sienitos miasquíticos a intermediários do Maciço Alcalino Poços de Caldas (MAPC), em especial o tipo da Pedreira, possuem enclaves microgranulares félsicos e máficoultramáficos intrigantes. O nefelina sienito da Pedreira (NeS) pode ser divido em duas fácies texturais: uma de granulação média-grossa a grossa (NeS-g), outra de granulação média-fina a fina (NeS-f). O NeSg possui, mais comumente, enclaves microgranulares félsicos (EMF), de composição fonolítica. Estes enclaves podem envolver enclaves menores, máfico-ultramáficos, gerando enclaves duplos. O NeSf apresenta mais tipicamente enclaves microgranulares máfico-ultramáficos (EMM), ora com feições de rompimento em estado plástico, ora com bordas angulosas e lineares. Diques de composição fonolítica cortam o NeS-g. As rochas estudadas neste trabalho são constituídas por nefelina, feldspato alcalino e clinopiroxênio. Como fase acessória, têm-se titanita, magnetita e biotita-flogopita. Apatita ocorre também como mineral acessório, com exceção para o NeS-g. No NeS-g, no NeS-f e nos EMF, o clinopiroxênio possui duas fases texturais: uma prismática, verde (egirina-augita) que também pode ter núcleo róseo/incolor (diopsídio, mais comum no NeS-f e no EMF); outra fibrosa, também verde, porém fortemente pleocroica (egirina). Os EMM são constituídos essencialmente por diopsídio, com M(médio)~80. Quando porfirítico, o enclave possui macrocristais de diopsídio róseo/incolor (#mg~0,9) imersos numa matriz de diopsídio verde (#mg~0,8), ambos prismáticos. Magnetita dos NeS possui pouca variação, com teores baixos de Ti, diferente da magnetita dos enclaves. A assinatura química da nefelina dos EMM é equivalente à do NeS-f, com mais Fe3+ e menos K em relação ao NeS-g. Feldspato alcalino tende a ser mais potássico nos EMF e apresenta maior variação composicional nos EMM (Ab10-33Or72-80). Biotita está presente somente nos EMF e flogopita somente nos EMM. O padrão de elementos terras raras (ETR) do clinopiroxênio róseo/incolor do NeS-f é semelhante ao do EMM. Egirina-augita e egirina possuem enriquecimento em ETR pesados. Os enclaves máfico-ultramáficos são ultrabásicos, classificados como tefritos/basanitos (Le Bas et al., 1986) ou nefelinitos/ankaratritos (De La Roche et al., 1980), enquanto as rochas félsicas são intermediárias, correspondentes a fonolitos ou nefelina sienitos, dependendo da granulometria. Os diques e o NeS-f são peralcalinos, enquanto o EMF, o NeS-g e os EMM são peralcalinos/metaluminosos. As rochas ultramáficas/ultrabásicas, aflorantes na porção noroeste do Maciço Alcalino Poços de Caldas (Ulbrich et al., 2002), possuem padrões de ETR que indicam que estas rochas podem estar geneticamente ligadas aos enclaves máfico-ultramáficos. De uma forma geral, as características estruturais, texturais e químicas das rochas estudadas corroboram com a hipótese de coexistência de pelo menos dois magmas distintos: um félsico sienítico insaturado outro ultramáfico/ultrabásico, que teriam interagido e formado os os EMM e o NeSf, principalmente. Enquanto num estágio posterior de cristalização do magma, porém ainda em estado plástico, o dique teria se colocado, com parcial absorção da rocha pelos nefelina sienitos, formando os EMF. / The miaskitic to intermediate nepheline syenites of Poços de Caldas Alkaline Massif, especially the Pedreira type, have intriguing felsic and mafic-ultramafic microgranular enclaves. The Pedreiras nepheline syenite type (NeS) can be divided into two textural facies: one that is medium-coarse to coarse grained (NeS-c) and the other that varies between medium-fine to fine grained (NeS-f). It is common among the NeS-c microgranular felsic enclaves (MFE) with phonolitic composition. These enclaves may develop smaller ones maficultramafic, generating double enclaves. The NeS-f usually presents mafic-ultramafic enclaves (MME), sometimes showing disrupted features in plastic stage and sometimes angular and linear edges. Phonolitic dykes cut the NeS-c. The rocks studied in this work are formed by nepheline, alkali-feldspar and clinopyroxene. The accessory phase is characterized by titanite, magnetite and biotite-phlogopite. In exception to the NeS-c, apatite also occurs as an accessory mineral. In the NeS-c, NeS-f and MFE, the clinopyroxene presents two textural phases: a green prismatic one (aegirine-augite), which also may have a pinkish/colourless core (diopsyde, which is common in the NeS-f and MFE); the other one is fibrous, also green, however with strongly pleocroism (aegirine). Essencially, the MME are formed by diopsyde, with M(medium)~80. When porphyritic, the enclave has macrocrystals of pinkish/colourless diopsyde (with mg#~0,9) in a green diopsyde (mg#~0,8) matrix, both prismatic. In the NeS, the magnetite varies little: with low levels of Ti, differently from the enclaves magnetite. The chemical signature of the nepheline in the MME equals to the one present in the NeS-f and has more Fe3+ and less K when compared to the NeS-c. The alkaline feldspar in the MFE has more potassium in its structure and presents a higher compositional variation in the MME (Ab10-33Or72-80). It is also noticeable that biotite is a component only to the MFE, while the phlogopite occurs in the MME. The rare earth elements (REE) pattern in the pinkish/colourless clinopyroxene of the NeS-f is similar to the MME. Both aegirine-augite and aegirine present an enrichment regarding the heavy REE. The MME are ultrabasic, classified as tephrite/basanite (Le Bas et al., 1986) or nephelinite/ankaratrites (De La Roche et al., 1980), while the felsic rocks are intermediate, corresponding to phonolite and nepheline syenite, depending on the grain size. The dykes and the NeS-f are peralkaline, while the MFE, NeS-c and the MME are peralkaline/metaluminous. The ultrabasic/ultrapotassic rocks, outcropping in the northwestern portion of the PCAM (Ulbrich et al., 2002), have REE patterns wich indicate that these rocks may be genetically related to mafic-ultramafic enclaves. Generally, the structural, textural and chemical signatures of the rocks studied in this work confirm the hypothesis of the coexistence of at least two different magmas: a syenitic undersaturated felsic one and a ultramafic/ultrabasic one, and their interaction resulted in the MME and, above all, the NeS-f. While in a late stage of magma cristalization, but still in the plastic state, the dike would be placed, with partial absorption of the rock by the nepheline syenite, resulting in the EMF.
8

The red syenite of the Pilansberg complex as a nepheline source for the South African ceramics and glass industry

Pantshi, Bukiwe 23 March 2007 (has links)
A viability study was undertaken on a farm Zandrivierspoort 210 JP, in the Pilanesberg Alkaline Complex to investigate the red syenite deposit. The red syenite deposit of interest is located in the south-western quadrant of the Pilanesberg. It is a potential source of nepheline, which is used as a flux in glass and ceramics industry. The study was aimed at establishing the demand for the material in South Africa and the market logistics related to its exploitation. Glass and ceramics manufacturers have different specifications as far as the quality and the product form is concerned. A market study conducted indicated that glass manufacturers require already beneficiated material with a low Fe content, depending on the kind of glass being manufactured. Ceramics manufactures also want material with low Fe content, but the material can be unbeneficiated as most of these factories already have facilities to remove Fe and other gangue. The common requirement is that material must be crushed and milled to a specific size. Red Syenite complies with the specifications of the ceramics manufacturer and did not comply directly with the specification of the glass manufacturer. The main reason for not non-compliance with glass specifications can be attributed to the fact that the material supplied was unbeneficiated. A major concern from the industry is the continuity of production from the deposit and an assurance of constant quality. It was also established that the availability of substitutes such as feldspar at a lower cost than nepheline results in an unwillingness of potential users to source nepheline despite its advantages. It is recommended that extensive geological studies be undertaken to confirm the resources and reserves of the entire nepheline-bearing deposits in the Pilanesberg. The mining of the deposit will be undertaken by employing a quarrying method, which will be followed by opencast to a depth of 50m. The Run-Of-Mine (ROM) will be crushed and milled to sizes specified by clients and the beneficiation process will follow. A financial investigation based on the known facts about the deposit established that capital, production rate, and selling price have the highest influence on the viability of the project. Transport and operating costs in this case showed a less significant influence on the viability of the project. / Dissertation (MSc (ESPM))--University of Pretoria, 2007. / Geology / unrestricted
9

Petrology and petrogenesis of the Motzfeldt Ta-mineralisation, Gardar Province, South Greenland

McCreath, Jamie Alan January 2009 (has links)
The Motzfeldt centre is one of four major alkaline centres belonging to the Igaliko complex of South Greenland. The melts parental to the Motzfeldt centre are interpreted from Hf isotopes to be derived form a common mantle source which experienced subsequent isotopic contamination from older crustal components during the interval between segregation and emplacement. Magmatism within the centre commenced with the emplacement of the Motzfeldt Sø Formation at 1273 ± 8 Ma. This unit is unique within the Motzfeldt intrusion as it is characterised by a high degree of textural and mineralogical variability and hosts localised Nb, Ta, U, Th, Zr and REE mineralisation associated with pyrochlore and late-stage REE bearing carbonate phases. Biotite halogen contents show that in addition to enrichment of incompatible elements the MSF and Motzfeldt centre in general is particularly rich in F. The elevated F content is inferred to have extended the crystallisation interval of the melt and facilitated fractionation down to relatively low temperatures. The unusual enrichment of F and incompatible elements in the MSF is suggested to represent the first and most evolved melts extracted from the top of a stratified storage chamber at depth. The MSF is also characterised by pervasive subsolidus alteration, giving the rock and region a striking brick red colour. Pb-Pb pyrochlore studies indicate that alteration in the formation was effectively synchronous (1267 ± 6 Ma), with the magmatic age of emplacement. Fluid inclusion studies suggest that contemporaneous to the exsolution of juvenile, high salinity, F-rich fluids was the wholesale influx of hydrothermally convected low salinity groundwaters through the formation. The presence of pervasive late-stage hematite and calcite throughout the MSF suggests that the oxidation potential of the bulk fluid increased above the hematite-magnetite buffer during the waning stages of the hydrothermal phase. Mineralisation was promoted by this shift in fluid composition, reducing the complexing potential of fluid ligands and facilitating mineralisation within the high-levels units of the intrusion where alteration is most intense. Economic mineralisation associated with the centre is inferred to be largely sourced from the parental melts, however the role the hydrothermal phase played was particularly important in locally mobilising and concentrating incompatible elements within the high-level units of the formation.
10

Magma chamber dynamics in the peralkaline magmas of the Kakortokite Series, South Greenland

Hunt, Emma J. January 2015 (has links)
Understanding crystallisation in magma chambers is a key challenge for igneous petrology. It is particularly important to understand the origins of layering in peralkaline rocks, e.g. the kakortokite (nepheline syenite), Ilímaussaq Complex, S. Greenland, as these are commonly associated with high value multi-element economic deposits. The kakortokite is a spectacular example of macrorhythmic (>5 m) layering. Each unit consists of three layers comprising arfvedsonite-rich (sodic-amphibole) black kakortokite at the base, grading into eudialyte-rich (sodic-zirconosilicate) red kakortokite, then alkali feldspar- and nepheline-rich white kakortokite. Each unit is numbered -19 to +17 relative to a characteristic well-developed horizon (Unit 0), however there is little consensus on their development. This project applies a multidisciplinary approach through field observations combined with petrography, crystal size distributions (CSDs), mineral and whole rock chemistries on Units 0, -8 to -11 and a phonolite/micro-nephelinolite (“hybrid”) sequence that crosscuts the layered kakortokite. Textures and compositions are laterally consistent across outcrop and indicators of current activity are rare. CSDs indicate in situ crystallisation with gravitational settling as a minor process. Chemical discontinuities occur across unit boundaries. The layering developed through large-scale processes under exceptionally quiescent conditions. The discontinuities reflect open-system behaviour; units were formed by an influx of volatile-rich magma that initiated crystallisation in a bottom layer. Nucleation was initially suppressed by high volatile element concentrations, which decreased to allow for crystallisation of arfvedsonite, followed by eudialyte, then alkali feldspar and nepheline to form each tripartite unit. The chemistry of the hybrid indicates mixing between a primitive (sub-alkaline) magma and kakortokite. Thus injections of magmas of varying compositions occurred, indicating a complex plumbing system below current exposure. The lessons learned at Ilímaussaq, which is extremely well exposed and preserved, are relevant to understanding magma chamber dynamics in the more common instances of pervasively altered peralkaline rocks.

Page generated in 0.0547 seconds