• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Economic Policy and Resource Implications of Biofuel Feedstock Production

Adusumilli, Naveen 2012 August 1900 (has links)
Dramatically higher fuel prices and massive petroleum imports from politically unstable countries have contributed to a major national initiative to generate renewable fuels in the United States. Often, such policies are enacted and implemented with huge taxpayer expenditures without due diligence to the consequences. The evaluation of the water quality impacts of converting pastureland to intensive biomass production for fuel in a southern Texas watershed suggest significant increases erosion and nutrient loadings to water bodies. The Best Management Practices (BMPs), cover crop and filter strips when implemented individually failed to produce status-quo reduction levels. Combined BMPs implementation produced improved mitigation, at substantially higher costs, highlighting the issue of sustainability related to the economics of renewable fuels. The estimation of the net energy of biomass ethanol accounting for the production input data indicate a greater than one energy return for biomass crops. However, the policy results indicate that only 70 percent in net contribution to the energy supply is achieved due to relatively lower energy returns compared to conventional fossil fuels. In addition, because the ethanol produced has to have the energy used deleted from the total, the cost of producing a gallon of biomass ethanol is substantially higher than that of gasoline. The impacts of an exogenously-specified biofuel mandate fulfilled by the production of a dedicated biomass crop and its consequent effects on commodity prices and overall welfare are estimated. Net farm income increased due to an increase in crop prices; however, both consumer surplus and total surplus decreased. The analysis is extended to estimate the sensitivity of Conservation Reserve Program (CRP) acres returning to crop production and the potential of higher biomass yields. The results indicate that net farm income decreased and consumer surplus increased due to a decrease in crop prices, resulting in an increase in overall welfare. This current research evaluates the unintended consequences of the U.S. energy policy and provides interesting insights of the potential economic and environmental impacts. These results suggest policy makers should be cautious before enacting energy policy and consider multiple alternative energy sources in an economic and financial context to achieve a sustainable energy goal.
2

The Development and Evaluation of Biofuel Production Systems on Marginal Land

January 2013 (has links)
abstract: The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks. / Dissertation/Thesis / M.S. Sustainability 2013
3

Life cycle assessment and resource management options for bio-ethanol production from cane molasses in Indonesia

Kummamuru Venkata, Bharadwaj January 2013 (has links)
The intent of this thesis is to analyse the sustainability of producing bio-ethanol from cane molasses in Indonesia and its potential to replace gasoline in the transportation sector. A field trip was conducted in East Java, Indonesia, and data was gathered for analysis. Life cycle assessment (LCA) was performed to analyse the net emissions and energy consumption in the process chain. The greenhouse gas (GHG) emissions of the life cycle are 17.45 gCO2e per MJ of ethanol produced. In comparison to gasoline, this results in a 78% reduction in GHG emissions in the complete process chain. Net Energy Value (NEV) and Net Renewable Energy Value (NREV) were 6.65 MJ/l and 24 MJ/l. Energy yield ratio (ER) was 9.43 MJ of ethanol per MJ of fossil energy consumed in the process. Economic allocation was chosen for allocating resources between sugar and molasses. Sensitivity analysis of various parameters was performed. The emissions and energy values are highly sensitive to sugarcane yield, ethanol yield and the price of molasses. Alternative management options were considered for optimizing the life cycle. Utilizing ethanol from all the mills in Indonesia has a potential to replace 2.3% of all motor gasoline imports. This translates in import savings of 2.3 trillion IDR per year. Use of anaerobic digestion or oxidation ponds for waste water treatment is unviable due to high costs and issues with gas leakage. Utilizing 15% of cane trash in the mill can enable grid independency. Environmental impacts due to land use change (Direct & Indirect) can be crucial in overall GHG calculations. Governmental regulation is necessary to remove current economic hurdles to aid a smoother transition towards bioethanol production and utilization. / Harnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia

Page generated in 0.0568 seconds