Spelling suggestions: "subject:"bnetwork 2security isualization"" "subject:"bnetwork 2security avisualization""
1 |
Scaling and Visualizing Network Data to Facilitate in Intrusion Detection TasksAbdullah, Kulsoom B. 07 April 2006 (has links)
As the trend of successful network attacks continue to rise, better forms of intrusion, detection and prevention are needed. This thesis addresses network traffic visualization techniques that aid administrators in recognizing attacks. A view of port statistics and Intrusion Detection System (IDS) alerts has been developed. Each help to address issues with analyzing large datasets involving networks. Due to the amount of traffic as well as the range of possible port numbers and IP addresses, scaling techniques are necessary.
A port-based overview of network activity produces an improved representation for detecting and responding to malicious activity. We have found that presenting an overview using stacked histograms of aggregate port activity, combined with the ability to drill-down for finer details allows small, yet important details to be noticed and investigated without being obscured by large, usual traffic.
Another problem administrators face is the cumbersome amount of alarm data generated from IDS sensors. As a result, important details are often overlooked, and it is difficult to get an overall picture of what is occurring in the network by manually traversing textual alarm logs. We have designed a novel visualization to address this problem by showing alarm activity within a network. Alarm data is presented in an overview from which system administrators can get a general sense of network activity and easily detect anomalies. They additionally have the option of then zooming and drilling down for details. Based on our system administrator requirements study, this graphical layout addresses what system administrators need to see, is faster and easier than analyzing text logs, and uses visualization techniques to effectively scale and display the data. With this design, we have built a tool that effectively uses operational alarm log data generated on the Georgia Tech campus network.
For both of these systems, we describe the input data, the system design, and examples. Finally, we summarize potential future work.
|
2 |
A Visualization Framework for SiLK Data exploration and Scan DetectionEl-Shehaly, Mai Hassan 21 September 2009 (has links)
Network packet traces, despite having a lot of noise, contain priceless information, especially for investigating security incidents or troubleshooting performance problems. However, given the gigabytes of flow crossing a typical medium sized enterprise network every day, spotting malicious activity and analyzing trends in network behavior becomes a tedious task. Further, computational mechanisms for analyzing such data usually take substantial time to reach interesting patterns and often mislead the analyst into reaching false positives, benign traffic being identified as malicious, or false negatives, where malicious activity goes undetected. Therefore, the appropriate representation of network traffic data to the human user has been an issue of concern recently. Much of the focus, however, has been on visualizing TCP traffic alone while adapting visualization techniques for the data fields that are relevant to this protocol's traffic, rather than on the multivariate nature of network security data in general, and the fact that forensic analysis, in order to be fast and effective, has to take into consideration different parameters for each protocol. In this thesis, we bring together two powerful tools from different areas of application: SiLK (System for Internet-Level Knowledge), for command-based network trace analysis; and ComVis, a generic information visualization tool. We integrate the power of both tools by aiding simplified interaction between them, using a simple GUI, for the purpose of visualizing network traces, characterizing interesting patterns, and fingerprinting related activity. To obtain realistic results, we applied the visualizations on anonymized packet traces from Lawrence Berkley National Laboratory, captured on selected hours across three months. We used a sliding window approach in visually examining traces for two transport-layer protocols: ICMP and UDP. The main contribution of this research is a protocol-specific framework of visualization for ICMP and UDP data. We explored relevant header fields and the visualizations that worked best for each of the two protocols separately. The resulting views led us to a number of guidelines that can be vital in the creation of "smart books" describing best practices in using visualization and interaction techniques to maintain network security; while creating visual fingerprints which were found unique for individual types of scanning activity. Our visualizations use a multiple-views approach that incorporates the power of two-dimensional scatter plots, histograms, parallel coordinates, and dynamic queries. / Master of Science
|
3 |
Visualising network security attacks with multiple 3D visualisation and false alert classificationMusa, Shahrulniza January 2008 (has links)
Increasing numbers of alerts produced by network intrusion detection systems (NIDS) have burdened the job of security analysts especially in identifying and responding to them. The tasks of exploring and analysing large quantities of communication network security data are also difficult. This thesis studied the application of visualisation in combination with alerts classifier to make the exploring and understanding of network security alerts data faster and easier. The prototype software, NSAViz, has been developed to visualise and to provide an intuitive presentation of the network security alerts data using interactive 3D visuals with an integration of a false alert classifier. The needs analysis of this prototype was based on the suggested needs of network security analyst's tasks as seen in the literatures. The prototype software incorporates various projections of the alert data in 3D displays. The overview was plotted in a 3D plot named as "time series 3D AlertGraph" which was an extension of the 2D histographs into 3D. The 3D AlertGraph was effectively summarised the alerts data and gave the overview of the network security status. Filtering, drill-down and playback of the alerts at variable speed were incorporated to strengthen the analysis. Real-time visual observation was also included. To identify true alerts from all alerts represents the main task of the network security analyst. This prototype software was integrated with a false alert classifier using a classification tree based on C4.5 classification algorithm to classify the alerts into true and false. Users can add new samples and edit the existing classifier training sample. The classifier performance was measured using k-fold cross-validation technique. The results showed the classifier was able to remove noise in the visualisation, thus making the pattern of the true alerts to emerge. It also highlighted the true alerts in the visualisation. Finally, a user evaluation was conducted to find the usability problems in the tool and to measure its effectiveness. The feed backs showed the tools had successfully helped the task of the security analyst and increased the security awareness in their supervised network. From this research, the task of exploring and analysing a large amount of network security data becomes easier and the true attacks can be identified using the prototype visualisation tools. Visualisation techniques and false alert classification are helpful in exploring and analysing network security data.
|
4 |
Trusted Querying over Wireless Sensor Networks and Network Security VisualizationAbuaitah, Giovani Rimon 22 May 2009 (has links)
No description available.
|
Page generated in 0.4896 seconds