• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Bayesian Finite Mixture Model for Network-Telecommunication Data

Manikas, Vasileios January 2016 (has links)
A data modeling procedure called Mixture model, is introduced beneficial to the characteristics of our data. Mixture models have been proved flexible and easy to use, a situation which can be confirmed from the majority of papers and books which have been published the last twenty years. The models are estimated using a Bayesian inference through an efficient Markov Chain Monte Carlo (MCMC) algorithm, known as Gibbs Sampling. The focus of the paper is on models for network-telecommunication lab data (not time dependent data) and on the valid predictions we can accomplish. We categorize our variables (based on their distribution) in three cases, a mixture of Normal distributions with known allocation, a mixture of Negative Binomial Distributions with known allocations and a mixture of Normal distributions with unknown allocation.

Page generated in 0.1029 seconds