• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application-oriented Networking through Virtualization and Service Composition

Bannazadeh, Hadi 16 March 2011 (has links)
Future networks will face major challenges in accommodating emerging and future networked applications. These challenges include significant architecture and management issues pertaining to future networks. In this thesis, we study several of these challenges including issues such as configurability, application-awareness, rapid application-creation and deployment and scalable QoS management. To address these challenges, we propose a novel Application-Oriented Network (AON) architecture as a converged computing and communication network in which application providers are able to flexibly configure in-network resources on-demand. The resources in AON are virtualized and offered to the application providers through service-oriented approaches. To enable large-scale experimentation with future network architectures and applications, in the second part of this thesis, we present the Virtualized Application Networking Infrastructure (VANI) as a prototype of an Application-Oriented Network. VANI utilizes a service-oriented control and management plane that provides flexible and dynamic allocation, release, program and configuration of resources used for creating applications or performing network research experiments from layer three and up. Moreover, VANI resources allow development of network architectures that require a converged network of computing and communications resources such as in-network processing, storage and software and hardware-based reprogrammable resources. We also present a Distributed Ethernet Traffic Shaping (DETS) system used in bandwidth virtualization in VANI and designed to guarantee the send and receive Ethernet traffic rates in VANI, in a computing cluster or a datacenter. The third part of this thesis addresses the problem of scalable QoS and admission control in service-oriented environments where a limited number of instances of service components are shared among different application classes. We first use Markov Decision Processes to find optimal solutions to this problem. Next we present a scalable and distributed heuristic algorithm able to guarantee probability of successful completion of a composite application. The proposed algorithm does not assume a specific distribution type for services execution times and applications request inter-arrival times, and hence is suitable for systems with stationary or non-stationary request arrivals. We use simulations and experimental measurements to show the effectiveness of the proposed solutions and algorithms in various parts of this thesis.
2

Application-oriented Networking through Virtualization and Service Composition

Bannazadeh, Hadi 16 March 2011 (has links)
Future networks will face major challenges in accommodating emerging and future networked applications. These challenges include significant architecture and management issues pertaining to future networks. In this thesis, we study several of these challenges including issues such as configurability, application-awareness, rapid application-creation and deployment and scalable QoS management. To address these challenges, we propose a novel Application-Oriented Network (AON) architecture as a converged computing and communication network in which application providers are able to flexibly configure in-network resources on-demand. The resources in AON are virtualized and offered to the application providers through service-oriented approaches. To enable large-scale experimentation with future network architectures and applications, in the second part of this thesis, we present the Virtualized Application Networking Infrastructure (VANI) as a prototype of an Application-Oriented Network. VANI utilizes a service-oriented control and management plane that provides flexible and dynamic allocation, release, program and configuration of resources used for creating applications or performing network research experiments from layer three and up. Moreover, VANI resources allow development of network architectures that require a converged network of computing and communications resources such as in-network processing, storage and software and hardware-based reprogrammable resources. We also present a Distributed Ethernet Traffic Shaping (DETS) system used in bandwidth virtualization in VANI and designed to guarantee the send and receive Ethernet traffic rates in VANI, in a computing cluster or a datacenter. The third part of this thesis addresses the problem of scalable QoS and admission control in service-oriented environments where a limited number of instances of service components are shared among different application classes. We first use Markov Decision Processes to find optimal solutions to this problem. Next we present a scalable and distributed heuristic algorithm able to guarantee probability of successful completion of a composite application. The proposed algorithm does not assume a specific distribution type for services execution times and applications request inter-arrival times, and hence is suitable for systems with stationary or non-stationary request arrivals. We use simulations and experimental measurements to show the effectiveness of the proposed solutions and algorithms in various parts of this thesis.
3

Networking infrastructure and data management for large-scale cyber-physical systems

Han, Song, doctor of computer sciences 25 February 2013 (has links)
A cyber-physical system (CPS) is a system featuring a tight combination of, and coordination between, the system’s computational and physical elements. A large-scale CPS usually consists of several subsystems which are formed by networked sensors and actuators, and deployed in different locations. These subsystems interact with the physical world and execute specific monitoring and control functions. How to organize the sensors and actuators inside each subsystem and interconnect these physically separated subsystems together to achieve secure, reliable and real-time communication is a big challenge. In this thesis, we first present a TDMA-based low-power and secure real-time wireless protocol. This protocol can serve as an ideal communication infrastructure for CPS subsystems which require flexible topology control, secure and reliable communication and adjustable real-time service support. We then describe the network management techniques designed for ensuring the reliable routing and real-time services inside the subsystems and data management techniques for maintaining the quality of the sampled data from the physical world. To evaluate these proposed techniques, we built a prototype system and deployed it in different environments for performance measurement. We also present a light-weighted and scalable solution for interconnecting heterogeneous CPS subsystems together through a slim IP adaptation layer and a constrained application protocol layer. This approach makes the underlying connectivity technologies transparent to the application developers thus enables rapid application development and efficient migration among different CPS platforms. At the end of this thesis, we present a semi-autonomous robotic system called cyberphysical avatar. The cyberphysical avatar is built based on our proposed network infrastructure and data management techniques. By integrating recent advance in body-compliant control in robotics, and neuroevolution in machine learning, the cyberphysical avatar can adjust to an unstructured environment and perform physical tasks subject to critical timing constraints while under human supervision. / text

Page generated in 0.1034 seconds