• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Chance Constraint Model for Multi-Failure Resilience in Communication Networks

Helmberg, Christoph, Richter, Sebastian, Schupke, Dominic 03 August 2015 (has links) (PDF)
For ensuring network survivability in case of single component failures many routing protocols provide a primary and a back up routing path for each origin destination pair. We address the problem of selecting these paths such that in the event of multiple failures, occuring with given probabilities, the total loss in routable demand due to both paths being intersected is small with high probability. We present a chance constraint model and solution approaches based on an explicit integer programming formulation, a robust formulation and a cutting plane approach that yield reasonably good solutions assuming that the failures are caused by at most two elementary events, which may each affect several network components.
2

A Chance Constraint Model for Multi-Failure Resilience in Communication Networks

Helmberg, Christoph, Richter, Sebastian, Schupke, Dominic 03 August 2015 (has links)
For ensuring network survivability in case of single component failures many routing protocols provide a primary and a back up routing path for each origin destination pair. We address the problem of selecting these paths such that in the event of multiple failures, occuring with given probabilities, the total loss in routable demand due to both paths being intersected is small with high probability. We present a chance constraint model and solution approaches based on an explicit integer programming formulation, a robust formulation and a cutting plane approach that yield reasonably good solutions assuming that the failures are caused by at most two elementary events, which may each affect several network components.

Page generated in 0.0631 seconds