• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2673
  • 1219
  • 191
  • 179
  • 120
  • 59
  • 35
  • 27
  • 26
  • 24
  • 24
  • 21
  • 20
  • 19
  • 18
  • Tagged with
  • 5687
  • 5687
  • 2016
  • 1733
  • 1469
  • 1374
  • 1254
  • 1198
  • 984
  • 753
  • 692
  • 671
  • 618
  • 530
  • 511
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

FPGA neural controller for three-phase sensorless induction motor drive systems

Dinu, Andrei January 2000 (has links)
No description available.
182

Personality and the prediction of work performance: artificial neural networks versus linear regression

Minbashian, Amirali, Psychology, Faculty of Science, UNSW January 2006 (has links)
Previous research that has evaluated the effectiveness of personality variables for predicting work performance has predominantly relied on methods designed to detect simple relationships. The research reported in this thesis employed artificial neural networks ??? a method that is capable of capturing complex nonlinear and configural relationships among variables ??? and the findings were compared to those obtained by the more traditional method of linear regression. Six datasets that comprise a range of occupations, personality inventories, and work performance measures were used as the basis of the analyses. A series of studies were conducted to compare the predictive performance of prediction equations that a) were developed using either artificial neural networks or linear regression, and b) differed with respect to the type and number of personality variables that were used as predictors of work performance. Studies 1 and 2 compared the two methods using individual personality variables that assess the broad constructs of the five-factor model of personality. Studies 3 and 4 used combinations of these broad variables as the predictors. Study 5 employed narrow personality variables that assess specific facets of the broad constructs. Additional methodological contributions include the use of a resampling procedure, the use of multiple measures of predictive performance, and the comparison of two procedures for developing neural networks. Across the studies, it was generally found that the neural networks were rarely able to outperform the simpler linear regression equations, and this was attributed to the lack of reliable nonlinearity and configurality in personality-work performance relationships. However, the neural networks were able to outperform linear regression in the few instances where there was some independent evidence of nonlinear or configural relationships. Consequently, although the findings do not support the usefulness of neural networks for specifically improving the effectiveness of personality variables as predictors of work performance, in a broader sense they provide some grounds for optimism for organisational researchers interested in applying this method to investigate and exploit complex relationships among variables.
183

Personality and the prediction of work performance: artificial neural networks versus linear regression

Minbashian, Amirali, Psychology, Faculty of Science, UNSW January 2006 (has links)
Previous research that has evaluated the effectiveness of personality variables for predicting work performance has predominantly relied on methods designed to detect simple relationships. The research reported in this thesis employed artificial neural networks ??? a method that is capable of capturing complex nonlinear and configural relationships among variables ??? and the findings were compared to those obtained by the more traditional method of linear regression. Six datasets that comprise a range of occupations, personality inventories, and work performance measures were used as the basis of the analyses. A series of studies were conducted to compare the predictive performance of prediction equations that a) were developed using either artificial neural networks or linear regression, and b) differed with respect to the type and number of personality variables that were used as predictors of work performance. Studies 1 and 2 compared the two methods using individual personality variables that assess the broad constructs of the five-factor model of personality. Studies 3 and 4 used combinations of these broad variables as the predictors. Study 5 employed narrow personality variables that assess specific facets of the broad constructs. Additional methodological contributions include the use of a resampling procedure, the use of multiple measures of predictive performance, and the comparison of two procedures for developing neural networks. Across the studies, it was generally found that the neural networks were rarely able to outperform the simpler linear regression equations, and this was attributed to the lack of reliable nonlinearity and configurality in personality-work performance relationships. However, the neural networks were able to outperform linear regression in the few instances where there was some independent evidence of nonlinear or configural relationships. Consequently, although the findings do not support the usefulness of neural networks for specifically improving the effectiveness of personality variables as predictors of work performance, in a broader sense they provide some grounds for optimism for organisational researchers interested in applying this method to investigate and exploit complex relationships among variables.
184

Personality and the prediction of work performance: artificial neural networks versus linear regression

Minbashian, Amirali, Psychology, Faculty of Science, UNSW January 2006 (has links)
Previous research that has evaluated the effectiveness of personality variables for predicting work performance has predominantly relied on methods designed to detect simple relationships. The research reported in this thesis employed artificial neural networks ??? a method that is capable of capturing complex nonlinear and configural relationships among variables ??? and the findings were compared to those obtained by the more traditional method of linear regression. Six datasets that comprise a range of occupations, personality inventories, and work performance measures were used as the basis of the analyses. A series of studies were conducted to compare the predictive performance of prediction equations that a) were developed using either artificial neural networks or linear regression, and b) differed with respect to the type and number of personality variables that were used as predictors of work performance. Studies 1 and 2 compared the two methods using individual personality variables that assess the broad constructs of the five-factor model of personality. Studies 3 and 4 used combinations of these broad variables as the predictors. Study 5 employed narrow personality variables that assess specific facets of the broad constructs. Additional methodological contributions include the use of a resampling procedure, the use of multiple measures of predictive performance, and the comparison of two procedures for developing neural networks. Across the studies, it was generally found that the neural networks were rarely able to outperform the simpler linear regression equations, and this was attributed to the lack of reliable nonlinearity and configurality in personality-work performance relationships. However, the neural networks were able to outperform linear regression in the few instances where there was some independent evidence of nonlinear or configural relationships. Consequently, although the findings do not support the usefulness of neural networks for specifically improving the effectiveness of personality variables as predictors of work performance, in a broader sense they provide some grounds for optimism for organisational researchers interested in applying this method to investigate and exploit complex relationships among variables.
185

Personality and the prediction of work performance: artificial neural networks versus linear regression

Minbashian, Amirali, Psychology, Faculty of Science, UNSW January 2006 (has links)
Previous research that has evaluated the effectiveness of personality variables for predicting work performance has predominantly relied on methods designed to detect simple relationships. The research reported in this thesis employed artificial neural networks ??? a method that is capable of capturing complex nonlinear and configural relationships among variables ??? and the findings were compared to those obtained by the more traditional method of linear regression. Six datasets that comprise a range of occupations, personality inventories, and work performance measures were used as the basis of the analyses. A series of studies were conducted to compare the predictive performance of prediction equations that a) were developed using either artificial neural networks or linear regression, and b) differed with respect to the type and number of personality variables that were used as predictors of work performance. Studies 1 and 2 compared the two methods using individual personality variables that assess the broad constructs of the five-factor model of personality. Studies 3 and 4 used combinations of these broad variables as the predictors. Study 5 employed narrow personality variables that assess specific facets of the broad constructs. Additional methodological contributions include the use of a resampling procedure, the use of multiple measures of predictive performance, and the comparison of two procedures for developing neural networks. Across the studies, it was generally found that the neural networks were rarely able to outperform the simpler linear regression equations, and this was attributed to the lack of reliable nonlinearity and configurality in personality-work performance relationships. However, the neural networks were able to outperform linear regression in the few instances where there was some independent evidence of nonlinear or configural relationships. Consequently, although the findings do not support the usefulness of neural networks for specifically improving the effectiveness of personality variables as predictors of work performance, in a broader sense they provide some grounds for optimism for organisational researchers interested in applying this method to investigate and exploit complex relationships among variables.
186

Personality and the prediction of work performance: artificial neural networks versus linear regression

Minbashian, Amirali, Psychology, Faculty of Science, UNSW January 2006 (has links)
Previous research that has evaluated the effectiveness of personality variables for predicting work performance has predominantly relied on methods designed to detect simple relationships. The research reported in this thesis employed artificial neural networks ??? a method that is capable of capturing complex nonlinear and configural relationships among variables ??? and the findings were compared to those obtained by the more traditional method of linear regression. Six datasets that comprise a range of occupations, personality inventories, and work performance measures were used as the basis of the analyses. A series of studies were conducted to compare the predictive performance of prediction equations that a) were developed using either artificial neural networks or linear regression, and b) differed with respect to the type and number of personality variables that were used as predictors of work performance. Studies 1 and 2 compared the two methods using individual personality variables that assess the broad constructs of the five-factor model of personality. Studies 3 and 4 used combinations of these broad variables as the predictors. Study 5 employed narrow personality variables that assess specific facets of the broad constructs. Additional methodological contributions include the use of a resampling procedure, the use of multiple measures of predictive performance, and the comparison of two procedures for developing neural networks. Across the studies, it was generally found that the neural networks were rarely able to outperform the simpler linear regression equations, and this was attributed to the lack of reliable nonlinearity and configurality in personality-work performance relationships. However, the neural networks were able to outperform linear regression in the few instances where there was some independent evidence of nonlinear or configural relationships. Consequently, although the findings do not support the usefulness of neural networks for specifically improving the effectiveness of personality variables as predictors of work performance, in a broader sense they provide some grounds for optimism for organisational researchers interested in applying this method to investigate and exploit complex relationships among variables.
187

Application of artificial neural networks in pharmacokinetics /

Turner, Joe, January 2003 (has links)
Thesis (Ph. D.)--Faculty of Pharmacy, University of Sydney, 2004. / Bibliography: leaves 217-253.
188

Neural network identification of quarter-car passive and active suspension systems /

Tran, Michael, January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 80-81). Also available via the Internet.
189

Neural inspired color constancy model based on double opponent neurons /

Lau, Hoi Ying. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 56-59). Also available in electronic version.
190

Attention detection based on cortical area V2 neurons /

Yang, Yanning. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 74-75). Also available in electronic version.

Page generated in 0.0614 seconds