• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neural network control of functional neuromuscular stimulation systems

Abbas, James Joseph January 1992 (has links)
No description available.
2

Design and development of an anthropomorphic hand prosthesis

Carvalho, André Rui Dantas 26 July 2011 (has links)
This thesis presents a preliminary design of a fully articulated five-fingered anthropomorphic human hand prosthesis with particular emphasis on the controller and actuator design. The proposed controller is a modified artificial neural network PID-based controller with application to the nonlinear and highly coupled dynamics of the hand prosthesis. The new solid state actuator has been designed based on electroactive polymers, which are a type of material that exhibit electromechanical behavior and a liquid metal alloy acts as the electrode. The solid state actuators reduce the overall mechanical complexity, risk failure and required maintenance of the prosthesis. / Graduate
3

Time-Domain Simulations of Aerodynamic Forces on Three-Dimensional Configurations, Unstable Aeroelastic Responses, and Control by Neural Network Systems

Wang, Zhicun 25 May 2004 (has links)
The nonlinear interactions between aerodynamic forces and wing structures are numerically investigated as integrated dynamic systems, including structural models, aerodynamics, and control systems, in the time domain. An elastic beam model coupled with rigid-body rotation is developed for the wing structure, and the natural frequencies and mode shapes are found by the finite-element method. A general unsteady vortex-lattice method is used to provide aerodynamic forces. This method is verified by comparing the numerical solutions with the experimental results for several cases; and thereafter applied to several applications such as the inboard-wing/twin-fuselage configuration, and formation flights. The original thought that the twin fuselage could achieve two-dimensional flow on the wing by eliminating free wing tips appears to be incorrect. The numerical results show that there can be a lift increase when two or more wings fly together, compared to when they fly alone. Flutter analysis is carried out for a High-Altitude-Long-Endurance aircraft wing cantilevered from the wall of the wind tunnel, a full-span wing mounted on a free-to-roll sting at its mid-span without and with a center mass (fuselage). Numerical solutions show that the rigidity added by the wall results in a higher flutter speed for the wall-mounted semi-model than that for the full-span model. In addition, a predictive control technique based on neural networks is investigated to suppress flutter oscillations. The controller uses a neural network model to predict future plant responses to potential control signals. A search algorithm is used to select the best control input that optimizes future plant performance. The control force is assumed to be given by an actuator that can apply a distributed torque along the spanwise direction of the wing. The solutions with the wing-tip twist or the wing-tip deflection as the plant output show that the flutter oscillations are successfully suppressed with the neural network predictive control scheme. / Ph. D.
4

Reinforcement Learning Approaches for Autonomous Guidance and Control in a Low-Thrust, Multi-Body Dynamical Environment

Nicholas Blaine LaFarge (8790908) 28 April 2023 (has links)
<p>Autonomous guidance and control techniques for low-thrust spacecraft under multi-body dynamics via reinforcement learning</p>

Page generated in 0.0716 seconds