• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metodologia para classificação de padrões de consumo de memória no linux baseada em mapas auto-organizáveis / A Methodology for Classification of Memory use Pattern in Linux based on Auto-Organized Maps.

Lin, Maurício Tia Ni Gong 10 February 2006 (has links)
Made available in DSpace on 2015-04-11T14:02:53Z (GMT). No. of bitstreams: 1 Mauricio Tia Ni Gong Lin.pdf: 636193 bytes, checksum: f576d0b7751120d8c4eaafb2517b1e22 (MD5) Previous issue date: 2006-02-10 / The growth of Linux operating system has taken it to become a worthy competitor to commercial software such as Microsoft s Windows and Sun s Solaris. Although the development and the improvement of several Linux s features, the problem related to Linux out of memory and the current mechanism used to solve it, named as OOM Killer, has brought a long discussion at Linux kernel community. The lack of scientific works related to OOM Killer process selection algorithm motivates this dissertation to propose a mechanism for identifying and classifying memory consumption patterns of Linux applications. Such mechanism is based on a neural network technique known as Self Organizing Maps. The development of a tool based on Self Organizing Maps presented the possibility of applying such approach for memory consumption patterns classification related to Linux applications use cases. / A evolução do sistema operacional Linux possibilitou que o mesmo se tornasse o principal concorrente dos sistemas operacionais do mercado como o Windows da Microsoft e Solaris da Sun. Apesar de diversas funcionalidades e melhorias desenvolvidas no Linux, o problema relacionado à falta de memória e o mecanismo existente de solucioná-lo, chamado de OOM Killer, ainda é motivo de longas discussões na comunidade do kernel Linux. A carência de pesquisas científicas relacionada ao algoritmo de seleção de processos do OOM Killer leva esta dissertação a propor um mecanismo de identificação e classificação de padrões de consumo de memória no Linux baseada no modelo de rede neural auto-organizável. A ferramenta desenvolvida nesta dissertação mostra a possibilidade de utilizar Mapas Auto-Organizáveis para classificar e identificar os padrões de consumo de memória de determinadas aplicações inseridas em contextos de casos de uso.

Page generated in 0.053 seconds