• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traumatically-Induced Degeneration and Reactive Astrogliosis in 3-D Neural Co-Cultures: Factors Influencing Neural Stem Cell Survival and Integration

Cullen, Daniel Kacy 29 November 2005 (has links)
Traumatic brain injury (TBI) results from a physical insult to the head and often results in temporary or permanent brain dysfunction. However, the cellular pathology remains poorly understood and there are currently no clinically effective treatments. The overall goal of this work was to develop and characterize a novel three-dimensional (3-D) in vitro paradigm of neural trauma integrating a robust 3-D neural co-culture system and a well-defined biomechanical input representative of clinical TBI. Specifically, a novel 3-D neuronal-astrocytic co-culture system was characterized, establishing parameters resulting in the growth and vitality of mature 3-D networks, potentially providing enhanced physiological relevance and providing an experimental platform for the mechanistic study of neurobiological phenomena. Furthermore, an electromechanical device was developed that is capable of subjecting 3-D cell-containing matrices to a defined mechanical insult, with a predicted strain manifestation at the cellular level. Following independent development and validation, these novel 3-D neural cell and mechanical trauma paradigms were used in combination to develop a mechanically-induced model of neural degeneration and reactive astrogliosis. This in vitro surrogate model of neural degeneration and reactive astrogliosis was then exploited to assess factors influencing neural stem cell (NSC) survival and integration upon delivery to this environment, revealing that specific factors in an injured environment were detrimental to NSC survival. This work has developed enabling technologies for the in vitro study of neurobiological phenomena and responses to injury, and may aid in elucidating the complex biochemical cascades that occur after a traumatic insult. Furthermore, the novel paradigm developed here may provide a powerful experimental framework for improving treatment strategies following neural trauma, and therefore serve as a valid pre-animal test-bed.

Page generated in 0.0828 seconds