• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Java Syntax Error Repair Using RoBERTa

Xiang, Ziyi January 2022 (has links)
Deep learning has achieved promising results for automatic program repair (APR).In this paper, we revisit this topic and propose an end-to-end approach Classfix tocorrect java syntax errors. Classfix uses the RoBERTa classification model to localizethe error, and uses the RoBERTa encoder-decoder model to repair the located buggyline. Our work introduces a new localization method that enables us to fix a programwith an arbitrary length. Our approach categorises errors into symbol errors and worderrors. We conduct a large scale experiment to evaluate Classfix and the result showsClassfix is able to repair 75.5% symbol errors and 64.3% word errors. In addition,Classfix achieves 97% and 84.7% accuracy in locating symbol errors and word errors,respectively. / Deep learning har uppnått lovande resultat för automatisk programreparation (APR).I den här uppsatsen återkommer vi till det här ämnet och använder Classfix för attkorrigera javasyntaxfel. Classfix använder en RoBERTa-classification model för attlokalisera felet och en RoBERTa-encoder-decoder model för att reparera buggar.Vårt arbete introducerar en ny lokaliseringsmetod som gör att vi kan fixa programav godtycklig längd. Studien kategoriserar fel i symbolfel och ordfel. Vi genomförstorskaliga experiment för att utvärdera Classfix. Resultatet visar att Classfix kan fixa75.5% av symbolfel och 64.3% av ordfel. Dessutom uppnår Classfix 97% och 84,7% noggrannhet när det gäller att lokalisera symbolfel respektive ordfel.

Page generated in 0.1155 seconds