• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 23
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 4
  • 1
  • Tagged with
  • 136
  • 136
  • 69
  • 41
  • 33
  • 28
  • 27
  • 23
  • 21
  • 20
  • 20
  • 18
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The use of the spontaneous Bn mouse mutant and targeted alleles of Smad2 and Tgif to understand axial specification and neural development

Carrel, Tessa Lyn, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xiv, 111 p.; also includes graphics (some col.). Includes bibliographical references (p. 98-111). Available online via OhioLINK's ETD Center
12

Genetic linkage studies of the splotch neural tube defect gene on mouse chromosome 1

Mancino, Franca January 1992 (has links)
No description available.
13

Neural Tube Defects in the Mouse: Interactions between the Splotch Gene and Retinoic Acid

Kapron-Brás, C. M. January 1987 (has links)
Note:
14

Neural tube defects in rodents caused by a tap water contaminant

Melin, Vanessa Estella 14 November 2011 (has links)
In May of 2006, the Hrubec group suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. Unintentional exposure to a teratogenic agent in tap water was identified as the cause. We aimed to identify the contaminant, but first we demonstrated that the NTDs were pathological being present on both gestational day 9 and 10. We also found that a second species, rats, developed NTDs when exposed to tap waters. Disinfection by-products (DBPs) arise when natural organic matter in municipal water sources reacts with disinfectants used in the water treatment process. Purge and trap gas chromatography-mass spectrometry (PT GC-MS) and animal exposure studies were used to determine if the teratogenic contaminant was a DBP. Since the distribution pattern of DBPs did not match the distribution pattern of NTDs, we concluded that a DBP was not likely to be responsible for the observed malformations. Pharmaceuticals and personal care products have emerged as ubiquitous contaminants of ground and surface waters, and have been detected in drinking water. In order to analyze for these compounds, we submitted different water samples to a commercial water analysis lab (AXYS Analytical Services, Sidney, BC, Canada). Several pharmaceuticals were identified in a number of samples, including a known teratogenic drug used to treat mood disorders and seizures: carbamazepine. Further analysis for carbamazepine was conducted in-house. Carbamazepine was found in several ground, surface, and tap waters, at various concentrations. To establish whether or not carbamazepine was responsible for NTDs in our mice, we conducted 2 dosing studies. Carbamazepine was provided to mice at concentrations detected in tap water, as well as approximately 2 x and 1000 x that concentration. Both studies found no significant differences in NTD rates among the dose groups. As no dose effect was observed, we concluded that CBZ was not directly responsible for the malformations. The identity of the teratogenic contaminant is not known at this time, but is unlikely to be a DBP or low concentrations of the pharmaceutical carbamazepine. / Master of Science
15

Characterisation of hitchhiker, a novel mouse mutant with spina bifida

Patterson, Victoria Louise January 2011 (has links)
Neural tube defects are a set of developmental malformations which can be highly debilitating, with limited treatment available. Mouse mutants exhibiting neural tube defects are studied to identify processes promoting proper neural tube closure, and potential points of intervention for future therapies. This thesis characterises the mouse mutant hitchhiker (hhkr), a hypomorphic allele of Tulp3 which presents with neural tube defects and polydactyly. The spina bifida and exencephaly observed in hhkr mutants are demonstrated to be consequences of failure of neural tube closure, and excessive proliferation is identified in the hindbrain neuroepithelium of mutant embryos. Intriguingly, increases apoptosis was reported for the Tulp3tmlJng mutant (lkeda et aI., 2001), and this increase is not conserved in Tulp3hhkr. Further support is provided for the role of Tulp3 as a negative regulator of Sonic hedgehog (Shh) signalling, confirming such a role in the limb, while preliminary data from genetic interaction studies between hhkr and Tectonic-/- are presented to suggest Tulp3 may exert a positive influence on Shh signalling in cranial regions. The molecular function of the Tulp3 protein is investigated, revealing an interaction between Tulp3 and Alx1, a transcription factor involved in skeletal patterning. An interaction between Tulp3 and Trim71, an E3 ubiquitin ligase is also demonstrated and supported by the eo- localisation of the proteins in transfected cells. Tulp3 is shown to be ubiquitinated in vivo, although this modification does not appear to be dependent on Trim7!. This thesis provides evidence that Tulp3 is likely to be involved in diverse protein-protein interactions around the cell, and some of these interactions may be crucial in promoting the proper closure of the neural tube.
16

Neural Tube Defect-causing Teratogens Affect Tissue Mechanical Properties and Cytoskeletal Morphology in Axolotl Embryos

Kakal, Fatima January 2007 (has links)
The teratogenic drugs cytochalasin B and valproic acid have been shown to alter F-actin polymerization, an effect that is crucial in forming microfilaments. Microfilaments form important cytoskeletal structures that maintain the structural integrity of the cell, cause cell motility and cell migration. Microfilament alterations are known to cause neural tube defects such as spina bifida and anencephaly (Walmod et al., 1999). We here aim to show that disruption of microfilaments by cytochalasin B and valproic acid affects the tensile properties of the tissue. Biomechanics is an interdisciplinary field that allows mechanical concepts to help us understand embryo development. This project used a novel tissue stretching device that measures the tensile properties of neural and epidermal tissue. The instrument used a pair of cantilevered wires to which the specimen was glued. This device stretched the mid-neural and -lateral tissue anterior-posterior (AP) and medio-lateral (ML) unidirectionally. The tensile properties of the tissue were determined by Resultant Young’s Modulus that depends on the true stress and true strain in the tissue sample. The experiment was conducted at a strain rate of 50%. Axolotl embryos were treated with 5ug/mL and 2.5ug/mL cytochalasin B and 5mM valproic acid at stage 13 (early neurula) for an hour, washed, and allowed to develop to stage 15 before it was used in the uniaxial tissue stretcher. Changes in the F-actin filaments were analysed by phalloidin staining and viewed under a confocal microscope. The tests show that disruption of microfilaments by cytochalasin B increases the stiffness of the dorsal-tissue by as much as 101% for CB-treated tissues stretched in the AP direction and 298% when stretched in the ML direction. VA-treated neural plate tissue showed a stiffness increase of 278% when stretched in the AP direction and 319%, when stretched in the ML direction. Changes in the F-actin filaments are quantified by phalloidin staining viewed with confocal microscopy. These findings indicate that direction-dependent mechanical forces in the tissue are contributing factors in closure of the neural tube in axolotl embryos.
17

Neural Tube Defect-causing Teratogens Affect Tissue Mechanical Properties and Cytoskeletal Morphology in Axolotl Embryos

Kakal, Fatima January 2007 (has links)
The teratogenic drugs cytochalasin B and valproic acid have been shown to alter F-actin polymerization, an effect that is crucial in forming microfilaments. Microfilaments form important cytoskeletal structures that maintain the structural integrity of the cell, cause cell motility and cell migration. Microfilament alterations are known to cause neural tube defects such as spina bifida and anencephaly (Walmod et al., 1999). We here aim to show that disruption of microfilaments by cytochalasin B and valproic acid affects the tensile properties of the tissue. Biomechanics is an interdisciplinary field that allows mechanical concepts to help us understand embryo development. This project used a novel tissue stretching device that measures the tensile properties of neural and epidermal tissue. The instrument used a pair of cantilevered wires to which the specimen was glued. This device stretched the mid-neural and -lateral tissue anterior-posterior (AP) and medio-lateral (ML) unidirectionally. The tensile properties of the tissue were determined by Resultant Young’s Modulus that depends on the true stress and true strain in the tissue sample. The experiment was conducted at a strain rate of 50%. Axolotl embryos were treated with 5ug/mL and 2.5ug/mL cytochalasin B and 5mM valproic acid at stage 13 (early neurula) for an hour, washed, and allowed to develop to stage 15 before it was used in the uniaxial tissue stretcher. Changes in the F-actin filaments were analysed by phalloidin staining and viewed under a confocal microscope. The tests show that disruption of microfilaments by cytochalasin B increases the stiffness of the dorsal-tissue by as much as 101% for CB-treated tissues stretched in the AP direction and 298% when stretched in the ML direction. VA-treated neural plate tissue showed a stiffness increase of 278% when stretched in the AP direction and 319%, when stretched in the ML direction. Changes in the F-actin filaments are quantified by phalloidin staining viewed with confocal microscopy. These findings indicate that direction-dependent mechanical forces in the tissue are contributing factors in closure of the neural tube in axolotl embryos.
18

Ultrastructure and histology of pre-spina bifida in the splotch-delayed mouse

Yang, Xiu-Ming January 1988 (has links)
No description available.
19

Zic transcription factors regulate retinoic acid metabolism during zebrafish neural development

Drummond, Danna L Unknown Date
No description available.
20

Neural tube defects : pathogenesis and gene-teratogen interaction in the mouse

Dempsey, Ellen E. January 1981 (has links)
No description available.

Page generated in 0.122 seconds