• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'outils miniatures à base de cristaux liquides permettant d'améliorer la résolution spatiale de mini-endoscopes

Tabourin, Loïc 03 June 2024 (has links)
Au cœur de la cognition, du comportement et des émotions, le cerveau demeure un organe encore méconnu. L'une des approches les plus novatrices utilisées pour son exploration est l'imagerie calcique, qui offre la possibilité de suivre en temps réel l'activité neuronale. Initialement pratiquée sur des animaux immobilisés, la miniaturisation des composants optiques et des capteurs d'images a permis le développement de nouveaux outils, appelés mini-endoscopes ou microendoscopes, permettant désormais ce type d'études sur des animaux libres de se déplacer. Les mini-endoscopes possédant des résolutions cellulaires (3 µm à 15 µm), ils présentent des limites quant à l'observation de structures plus fines telles que les dendrites et les épines dendritiques (∼ 0.4 µm). Dans cette thèse, après avoir présenté un nouveau design d'endoscope fonctionnant à deux couleurs, nous exposons trois solutions novatrices visant à améliorer la résolution des mini-endoscopes. La première implique l'intégration d'une lentille à cristaux liquides ajustable, connue sous le nom de lentille fovéale. Cette lentille permet de modifier localement la distance focale lorsqu'elle est positionnée dans la voie d'imagerie. Nous avons obtenu un ajustement allant jusque 244 µm. Nous démontrons également la génération de spots lumineux dans le champ de vue en utilisant une seconde lentille fovéale placée dans la voie d'excitation. La seconde solution vise à corriger les aberrations optiques présentes dans le système microendoscopique, en particulier celles introduites par les lentilles à gradient d'indice. Pour ce faire, nous utilisons une lentille ajustable à base de cristaux liquides dont l'électrode circulaire est segmentée en huit électrodes indépendantes, permettant de remodeler la forme du front d'onde optique en introduisant des retards de phase. Nous faisons la caractérisation complète de cette lentille et faisons la démonstration de son efficacité en générant des fronts d'ondes aléatoires. La troisième solution repose sur l'utilisation de techniques de super-résolution pour surpasser la limite de diffraction. À cette fin, nous avons développé un module à base de cristaux liquides permettant de générer les différents motifs d'illumination nécessaires à l'application de la technique de l'illumination structurée. / At the core of cognition, behavior, and emotions, the brain remains a largely undiscovered organ. One of the most innovative approaches used for its exploration is calcium imaging, providing the ability to monitor neuronal activity in real time. Initially conducted on immobilized animals, the miniaturization of optical components and image sensors has led to the development of new tools, known as mini-endoscopes or microendoscopes, enabling such studies on freely moving animals. While mini-endoscopes have cellular resolutions (3 µm to 15 µm), they have limitations in observing finer structures such as dendrites and dendritic spines (∼ 0.4 µm). In this thesis, after introducing a new two-color endoscope design, we present three innovative solutions aimed at improving mini-endoscope resolution. The first involves integrating an adjustable liquid crystal lens, known as a foveal lens, to locally modify the focal distance when positioned in the imaging path. We achieved adjustments up to 244 µm. We also demonstrate the generation of bright spots in the field of view using a second foveal lens placed in the excitation path. The second solution aims to correct optical aberrations in the microendoscopic system, especially those introduced by gradient index lenses. To achieve this, we use an adjustable liquid crystal lens with a circular electrode segmented into eight independent electrodes, allowing the reshaping of the optical wavefront by introducing phase delays. We conduct a comprehensive characterization of this lens and demonstrate its effectiveness by generating random wavefronts. The third solution relies on the use of super-resolution techniques to overcome the diffraction limit. For this purpose, we developed a liquid crystal-based module to generate various illumination patterns necessary for the application of structured illumination techniques.

Page generated in 0.0885 seconds