• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chronic Stress and Sex as Mediators of the Basolateral-Centromedial Amygdala Circuit and its Response to Acute Ethanol

Gainey, Sean 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Anxiety disorders are the most common class of mental disorders in the United States, and they both promote and exacerbate disorders of substance abuse. Mounting evidence of sex differences in the relationship between anxiety disorders and alcoholism supports the potential existence of an anxiety-dependent vulnerability to alcohol abuse in women compared with men. One potential point of overlap in the physiological systems involved in anxiety response and reward processing is the amygdala. Here, a model of chronic stress in rodents was employed to probe changes in the electrophysiological and biochemical properties of the amygdala at a post-stress baseline and during a post-stress first exposure to alcohol. Electrophysiological data revealed that neurons in the centromedial amygdala were more responsive to stimulation in the basolateral amygdala in females compared with males, but a history of chronic stress altered the female response to match that of males with or without a history of chronic stress. Protein analysis of postsynaptic glutamatergic receptor expression and phosphorylation in the amygdala did not indicate any differences based on sex or exposure to stress or alcohol. These data demonstrate a sex difference in stress-induced alterations in amygdala circuitry and indicate a potential role for this circuitry in the comorbidity of anxiety disorders and alcoholism.
2

Chronic Stress and Sex as Mediators of the Basolateral-Centromedial Amygdala Circuit and its Response to Acute Ethanol

Sean Cameron Gainey (8250648) 15 May 2020 (has links)
Anxiety disorders are the most common class of mental disorders in the United States, and they both promote and exacerbate disorders of substance abuse. Mounting evidence of sex differences in the relationship between anxiety disorders and alcoholism supports the potential existence of an anxiety-dependent vulnerability to alcohol abuse in women compared with men. One potential point of overlap in the physiological systems involved in anxiety response and reward processing is the amygdala. Here, a model of chronic stress in rodents was employed to probe changes in the electrophysiological and biochemical properties of the amygdala at a post-stress baseline and during a post-stress first exposure to alcohol. Electrophysiological data revealed that neurons in the centromedial amygdala were more responsive to stimulation in the basolateral amygdala in females compared with males, but a history of chronic stress altered the female response to match that of males with or without a history of chronic stress. Protein analysis of postsynaptic glutamatergic receptor expression and phosphorylation in the amygdala did not indicate any differences based on sex or exposure to stress or alcohol. These data demonstrate a sex difference in stress-induced alterations in amygdala circuitry and indicate a potential role for this circuitry in the comorbidity of anxiety disorders and alcoholism.
3

Behavioural and Molecular Outcomes of Early Life Immune Challenge in Mice / Early Life Immune Challenge In Mice

Sidor, Michelle M. 12 1900 (has links)
<p> Although historically treated as separate systems, there is considerable interaction between the immune system and brain. It has become increasingly clear that immunebrain communication is important to both health and disease. An immunogenic challenge given during the first postnatal week in rodents impacts the developing central nervous system (CNS) leading to long-term behavioural and molecular alterations reflective of enhanced stress-reactivity. Anxiety and depression are stress-related pathologies with a proposed neurodevelopmental origin suggesting that perturbation to neonatal immunebrain signalling may contribute to psychopathology. The current body of work examined the long-term impact of an early immune challenge on behavioural and molecular phenotypes associated with anxiety and depression. Mice were administered lipopolysaccharide (LPS) on postnatal days three and five. The emergence of anxietyrelated behaviour was characterized along the developmental trajectory of LPS-mice concurrent with changes to serotonergic neurocircuitry. Adult depressive-related behaviour was assessed in the forced swim test (FST) along with hippocampal neurogenesis as revealed by immunoreactivity for bromodeoxyuridine (BrdU) and doublecortin (DCX). The results demonstrated a sex-specific alteration in both the temporal emergence and phenotypic variant of anxiety-related behaviours displayed by LPS-mice. This was accompanied by changes to CNS serotonergic-related gene expression that coincided with a critical developmental time window essential to the establishment of emotionality. Adult LPS-mice exhibited hyperactivity during the FST that was accompanied by increased doublecortin immunoreactivity in the dorsal and ventral hippocampus, reflecting enhanced immature neuronal differentiation. The current results demonstrate that an early immune challenge impacts the developing CNS leading to enhanced emotional-reactivity. Altered serotonergic neurocircuitry and adult hippocampal neurogenesis may underlie behavioural abnormalities. The current body of work demonstrates a preeminent role for early-life immune disturbance in psychopathology and advances understanding of how immune-brain signalling impacts the developing CNS and confers risk for later disease. </p> / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0408 seconds