• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The neuropathology of Parkinson's disease : cognitive and motor consequences

Dickson, Jonathan Mark January 2000 (has links)
No description available.
2

The role of subthalamic nucleus oscillatory activity as it pertains to decision-making

Zavala, Baltazar Antonio January 2015 (has links)
The subthalamic nucleus (STN), which is the most common target for deep brain stimulation for Parkinson's disease, is known to be crucially involved in motor control. Recent appreciation of the potential non-motor side effects of STN deep brain stimulation, however, has led to speculation that the importance of this nucleus may also relate to processes involved in decision- making, particularly during high conflict scenarios. This thesis concerns itself with investigating the STN's role in action selection during conflict. I begin by recording local field potentials directly from the STN of Parkinson's disease patients while they perform a flanker task that has been shown to elicit theta (4-8 Hz) band activity in areas of the prefrontal cortex involved in cognitive control. I report that like the prefrontal cortex, the STN demonstrates elevated theta activity during conflict. I then test whether STN theta activity is related to that of the prefrontal cortex by recording from both sites simultaneously while patients perform a novel task that temporally separates conflict from stimulus onset or movement. This reveals that theta activity indeed becomes synchronized during conflict, with cortical oscillations driving those of the STN. Thirdly, I investigate how STN oscillations may affect firing rate dynamics by intra-operatively recording local field potentials and single unit activity from patients performing the flanker task. I report that both theta and beta (15-30 Hz) oscillations entrain STN neurons, but only during conflict. Finally, I record cortical and STN activity while a fourth group of patients performs the flanker task. This experiment confirms that cortico-STN theta synchrony is elevated during conflict and may also relate to across-trial adaptations to conflict and errors. Taken together these studies shed light on the mechanisms by which cortical structures may influence the STN during conflict and why STN deep brain stimulation may result in impulsivity.

Page generated in 0.0779 seconds