Spelling suggestions: "subject:"neuromorphic computing, biomaker 2"" "subject:"neuromorphic computing, bizmaker 2""
1 |
Implementation of bioinspired algorithms on the neuromorphic VLSI system SpiNNaker 2Yan, Yexin 29 June 2023 (has links)
It is believed that neuromorphic hardware will accelerate neuroscience research and enable the next generation edge AI. On the other hand, brain-inspired algorithms are supposed to work efficiently on neuromorphic hardware. But both processes don't happen automatically. To efficiently bring together hardware and algorithm, optimizations are necessary based on the understanding of both sides. In this work, software frameworks and optimizations for efficient implementation of neural network-based algorithms on SpiNNaker 2 are proposed, resulting in optimized power consumption, memory footprint and computation time. In particular, first, a software framework including power management strategies is proposed to apply dynamic voltage and frequency scaling (DVFS) to the simulation of spiking neural networks, which is also the first-ever software framework running a neural network on SpiNNaker 2. The result shows the power consumption is reduced by 60.7% in the synfire chain benchmark. Second, numerical optimizations and data structure optimizations lead to an efficient implementation of reward-based synaptic sampling, which is one of the most complex plasticity algorithms ever implemented on neuromorphic hardware. The results show a reduction of computation time by a factor of 2 and energy consumption by 62%. Third, software optimizations are proposed which effectively exploit the efficiency of the multiply-accumulate array and the flexibility of the ARM core, which results in, when compared with Loihi, 3 times faster inference speed and 5 times lower energy consumption in a keyword spotting benchmark, and faster inference speed and lower energy consumption for adaptive control benchmark in high dimensional cases. The results of this work demonstrate the potential of SpiNNaker 2, explore its range of applications and also provide feedback for the design of the next generation neuromorphic hardware.
|
Page generated in 0.055 seconds