Spelling suggestions: "subject:"neuron deconstruction"" "subject:"neuron areconstruction""
1 |
Reconstruction of 3D Neuronal StructuresKumar, Kanuj January 2013 (has links) (PDF)
Microscopic analysis of biological structures can be significantly enhanced by representing the object of study as a three-dimensional entity. To assist neurobiologists investigate the molecular mechanisms involved in neurite formation requires an adequate visual model or at least some measurable data. Reconstruction helps analysis of biological structures by representing the object of study as a three-dimensional entity. It helps gain insight into the morphological variation observed in each class of neurons and for simulations of neuronal behavior. To perform the reconstruction, biologists today have to rely on time-consuming manual or semi-manual methods which either doesn't exhibit robustness against noise of microscopy images or fail to capture precise dendritic structures, thus necessitating the need of fully-automated reconstruction methods for neuronal structures. In our work, we designed a framework with the goal of enabling automation and yet produce flexible outputs to ensure a high quality reconstruction with minimal user intervention.
Our framework is also not bound by varying contrast, size or resolution of data, thus capable of working on data obtained from wide variety of acquisition methods and neuronal structures.
|
2 |
Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum / マウス前障においてパルブアルブミン陽性およびソマトスタチン陽性GABA作動性神経細胞が示す、亜領域に選択的な樹状突起及び軸索の走行Takahashi, Megumu 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24505号 / 医博第4947号 / 新制||医||1064(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 林 康紀, 教授 井上 治久 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.1038 seconds