Spelling suggestions: "subject:"neuronale netze, erregungsausbreitung"" "subject:"neuronale netze, erkrankungsausbreitung""
1 |
Analytische Beschreibung von Ereignisabhängigkeiten in neuronalen SystemenSchulze, Rainer W. 12 November 2012 (has links)
Die Erregungsausbreitung in neuronalen Systemen beruht auf materieller Grundlage, Transmittermoleküle werden präsynaptisch emittiert und postsynaptisch absorbiert. Emission und Absorption sind einander sich selbst verursachende Prozesse, sie sind voneinander ereignisabhängig und damit nur schwer zu unterscheiden. Diese Schwierigkeit wird prekär, wenn es darum geht, den Prozeß der Erregungsausbreitung technisch modellieren und simulieren zu wollen. Im Verlaufe der Simulation bilden sich Abhängigkeiten heraus, deren Ursachen nicht mehr vereinzelt werden können. Demzufolge ist es schwierig, das Verhalten des Simulationsmodells zu prognostizieren.
Gleichermaßen schwierig ist es aber auch, das gezeigte Verhalten zweifelsfrei interpretieren zu wollen. Aus diesem Grunde macht es sich erforderlich, das Verhalten eines neuronalen Netzes auf analytischem Wege zu beschreiben. Erschwerend wirkt hierbei der Umstand, daß es innerhalb des Netzes voneinander ereignisabhängige Prozesse gibt, die sich selbst verursachen. Zur Beschreibung dessen gibt es zwei in Raum und Zeit variable Parameter: erstens die Vorzugsorientierung bei der Erregungsausbreitung, bezeichnet als 'Beweglichkeit', und zweitens die Durchlässigkeit des Netzes für den Erregungstransport, bezeichnet als 'Diffusionskoeffizient'. Diese beiden Parameter werden hergenommen, um eine vektoranalytische Beschreibungsgleichung abzuleiten, Unterschiede zu 'klassischen' neuronalen Netzen werden herausgestellt.
|
2 |
Wechselwirkungen in einem Zellularen Beobachtungsgebiet - dargestellt am Beispiel einer NeuronenpopulationSchulze, Rainer W. 12 November 2012 (has links)
Vorgestellt wird ein Ansatz zur mathematischen Beschreibung der Erregungsausbreitung in einer Neuronenpopulation. Beschrieben werden im Detail die Einzugsgebiete der Erregungsausbreitung und die Intensität von Wechselwirkungen innerhalb solcher Einzugsgebiete. Als schwierig erweist sich dabei die Trennung von Ursache und Reaktion. In einer natürlichen Neuronenpopulationen sind Transmittermoleküle, die Botenstoffe zwischen den Neuronen, sowohl Erregung als auch Reaktion. Sie verursachen, angelagert auf der Membranoberfläche eines Neurons, dessen Erregung in Form einer Depolarisation; sie sind gleichermaßen aber auch Reaktion eines Neurons auf eine stattgefundene Erregung, wenn sie aus den Vesikeln des synaptischen Endknopfes in den synaptischen Spalt ausgeschüttet werden. Zur Überwindung dieser Dualität wird der Begriff Wirkstoff definiert. Ein Wirkstoff bewirkt etwas, er besitzt unter diesem Gesichtspunkt ein bestimmtes Potential. Die Ausbreitung von Wirkstoffen, nämlich die Wirkungsübertragung, ereignet sich extrazellulär in Raum und Zeit. Im Detail wird dargelegt, wie aus dem punktuellen Ausbreitungsverhaltens einer Erregung über das unvollständig globale Ausbreitungsverhalten auf das vollständig globale Ausbreitungsverhalten einer Erregung in einer Neuronenpopulation geschlußfolgert werden kann.
Das Ziel besteht darin, einen Ansatz zur analytischen Beschreibung der Erregungsausbreitung in natürlichen Neuronenpopulationen vorzubereiten und in seiner Sinnfälligkeit zu plausibilisieren. Sinnfällig erscheinen solche Betrachtungen im Hinblick auf den Entwurf STOCHASTISCH MASSIV PARALLELER SYSTEME. Darunter werden technische Systeme verstanden, die sowohl in ihrem technischen Konzept als auch in ihrer Wirkungsweise Korrespondenzen zu natürlichen Neuronenpopulationen aufweisen. Ausgehend von der Struktur und dem Erregungsmechanismus eines Neurons soll in der Perspektive ein analytisches Entwurfswerkzeug für STOCHASTISCH MASSIV PARALLELE SYSTEME entwickelt werden.
|
Page generated in 0.1078 seconds