Spelling suggestions: "subject:"neurones à décharge"" "subject:"eurones à décharge""
1 |
Implémentation matérielle d'un réseau de neurones à décharges pour synchronisation rapide / Hardware implementation of a spiking neural network for fast synchronizationCaron, Louis-Charles January 2011 (has links)
In this master thesis, we present two different hardware implementations of the Oscillatory Dynamic Link Matcher (ODLM). The ODLM is an algorithm which uses the synchronization in a network of spiking neurons to realize different signal processing tasks. The main objective of this work is to identify the key design choices leading to the efficient implementation of an embedded version of the ODLM. The resulting systems have been tested with image segmentation and image matching tasks. The first system is bit-slice and time-driven. The state of the whole network is updated at regular time intervals. The system uses a bit-slice architecture with a large number of processing elements. Each processing element, or slice, implements one neuron of the network and takes the form of a column on the hardware. The columns are placed side by side and they are locally connected to their 2 neighbors. This local hardware connection scheme makes the system scalable, which means that columns can be easily added to increase the capacity of the system. Each column consists of a weight vector, a synapse model unit and a membrane model unit. The system can implement any network topology, making it very flexible. The function governing the time evolution of the neurons' membrane potential is approximated by a piece-wise linear function to reduce the amount of logical resources required. With this system, a fully-connected network of 648 neurons can be implemented on a Virtex-5 Xilinx XC5VSX5OT FPGA clocked at 100 MHz. The system is designed to process simultaneous spikes in parallel, reaching a maximum processing speed of 6 Mspikes/s. It can segment a 23×23 pixel image in 2 seconds and match two pre-segmented 90×30 pixel images in 550 ms. The second system is event-driven. A single processing element sequentially processes the spikes. This processing element is a 5-stage pipeline which can process an average of 1 synapse per 7 clock cycles. The synaptic weights are not stored in memory in this system, they are computed on-the-fly as spikes are processed. The topology of the network is also resolved during operation, and the system supports various regular topologies like 8-neighbor and fully-connected. The membrane potential time evolution function is computed with high precision using a look-up table. On the Virtex-5 FPGA, a network of 65 536 neurons can be implemented and a 406×158 pixel image can be segmented in 200 ms. The FPGA can be clocked at 100 MHz. Most of the design choices made for the second system are well adapted to the hardware implementation of the ODLM. In the original ODLM, the weight values do not change over time and usually depend on a single variable. It is therefore beneficial to compute the weights on the fly rather than saving them in a huge memory bank. The event-driven approach is a very efficient strategy. It reduces the amount of computations required to run the network and the amount of data moved in and out of memory. Finally, the precise computation of the neurons' membrane potential increases the convergence speed of the network.
|
2 |
Simulateur matériel à événements discrets de réseaux de neurones à décharges avec application en traitement d’imagesSéguin-Godin, Guillaume January 2016 (has links)
L’utilisation de réseaux de neurones artificiels pour divers types de traitements d’information bio-inspirés est une technique de plus en plus répandue dans le domaine de l’intelligence artificielle. Leur fonctionnement diffère avantageusement de celui des ordinateurs conventionnels en permettant une plus grande parallélisation des calculs, ce qui explique pourquoi autant d’efforts sont déployés afin de réaliser une plate-forme matérielle dédiée à leur simulation. Pour ce projet, une architecture matérielle flexible simulant efficacement un réseau de neurones à décharges est présentée. Celle-ci se distingue des architectures existantes notamment parce qu’elle utilise une approche de simulation à événements discrets et parce qu’elle permet une détection efficace des événements simultanés. Ces caractéristiques en font une plate-forme de choix pour la simulation de réseaux de neurones à décharges de plus de 100 000 neurones où un niveau important de synchronie des décharges neuronales est atteint. Afin d’en démontrer les performances, une application en traitement d’images utilisant cette architecture a été réalisée sur FPGA. Cette application a permis de démontrer que la structure proposée pouvait simuler jusqu’à 2[indice supérieur 17] neurones et traiter des dizaines de millions d’événements par secondes lorsque cadencé à 100 MHz.
|
Page generated in 0.071 seconds