Spelling suggestions: "subject:"neuropeptide signaling"" "subject:"neuropeptides signaling""
1 |
Identification and functional characterization of relaxin-type and pedal peptide/orcokinin-type neuropeptides in the starfish Asterias rubensLin, Ming January 2017 (has links)
Neuropeptides are neuronal signaling molecules that regulate many physiological and behavioural processes in vertebrates and invertebrates. Investigation of neuropeptide signaling in echinoderms (e.g. starfish) can provide insights into the evolution of neuropeptide systems because as deuterostomian invertebrates they occupy an "intermediate" phylogenetic position between vertebrates and protostomian invertebrates. Recent analysis of neural transcriptome data from the starfish Asterias rubens has identified 40 transcripts encoding neuropeptide precursors. Here the expression and function of neuropeptides derived from four of these precursors was investigated: relaxin-like gonad-stimulating peptide precursor (AruRGPP), relaxin-like peptide precursor 2 (AruRLPP2), pedal peptide-like neuropeptide precursors 1 and 2 (ArPPLNP1 and ArPPLNP2). AruRGP induces spawning of ovarian fragments from A. rubens. Analysis of the expression of AruRGPP in A. rubens using mRNA in situ hybridization revealed expression by cells in the radial nerve cords, circumoral nerve ring and tube feet. Furthermore, a band of AruRGPP-expressing cells was also identified in the body wall epithelium lining the cavity that surrounds the sensory terminal tentacle and optic cushion at the tips of the arms. Discovery of these cells is important because they are candidate physiological mediators for hormonal control of starfish spawning in response to environmental cues. Interestingly, AruRLPP2 is also expressed in the same region of the arm tip as AruRGPP but the physiological role(s) of AruRLP2 is not yet known. Analysis of the expression of ArPPLNP1 and ArPPLNP2 using mRNA in situ hybridization revealed a widespread pattern of expression in A. rubens. Furthermore, immunohistochemical localization of peptides derived from these precursors revealed immunostaining in neuronal processes innervating muscles. Consistent with this pattern of expression, peptides derived from ArPPLNP1 and ArPPLNP2 act as muscle relaxants in starfish. Interestingly, this contrasts with previous findings from protostomian invertebrates, where pedal peptide/orcokinin-type neuropeptides act as muscle contractants.
|
2 |
Temporal Organization of Behavioral States through Local Neuromodulation in C. elegansBanerjee, Navonil 14 December 2016 (has links)
Neuropeptide signaling play critical roles in maintaining distinct behavioral states and orchestrating transitions between them. However, elucidating the mechanisms underlying neuropeptide modulation of neural circuits in vivo remains a major challenge. The nematode Caenorhabditis elegans serves as an excellent model organism to study neuropeptide signaling mechanisms encoded in relatively simple neural circuits. We have used the C. elegans egg-laying circuit as a model to understand how neuropeptide signaling modifies circuit activity to generate opposing behavioral outcomes. C. elegans egg-laying behavior is composed of alternating cycles of two states – short bursts of egg deposition (active phases) and prolonged periods of quiescence (inactive phases). We have identified two neuropeptides (NLP-7 and FLP-11) that are locally released from a group of neurosecretory cells (uv1) and coordinate the temporal organization of egglaying by prolonging the duration of inactive phases. These neuropeptides regulate activity within the core circuit by inhibiting serotonergic transmission between its individual components (HSN motorneurons and Vm2 vulval muscles). This inhibition is achieved at least in part, by reducing synaptic vesicle abundance in the HSN synaptic regions. To identify potential downstream signaling components that mediate the actions of these neuropeptides, we have performed a forward genetic screen and have identified a strong candidate. In addition, we are trying to identify the receptor(s) of these neuropeptides by using a candidate gene approach. Together, we demonstrate that local neuropeptide signaling maintains the periodicity of distinct behavioral states by regulating serotonergic transmission in the core neural circuit.
|
Page generated in 0.0901 seconds