• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epigenetic regulation of stroke recovery : changes in DNA methylation and micro-RNA regulation following stroke and EGF/EPO neurogenesis therapy

Lowings, Michael D, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Stroke is one of the most common, and damaging, neurological afflictions. Stroke causes widespread and variable chronic effects, due to the limited regenerative ability of the adult brain. Altered gene expression induces neuronal changes necessary for plasticity-dependent recovery, effects which can be enhanced by growth hormone-based pharmaceuticals. These processes are driven by alterations in the informational capacity of the genome – changes driven by epigenetic regulators. Following experimental strokes, and treatment with EGF and EPO, this study shows that two epigenetic regulatory mechanisms, DNA methylation and microRNA regulation, are significantly altered, both in treated and untreated animals. Specifically, treatment induces a net global suppression of miRNA activity, which appears to modify the physical behaviour of neurons in domains ranging from plasticity and memory formation, growth and replication, and potentially even to neurological disease signalling. The confirmation of epigenetic alterations following a stroke indicates a future role for epigenetic neuro-pharmacology in stroke management. / x, [99] leaves : ill. (some col.) ; 29 cm
2

Adrenalectomy-induced neuronal degeneration : development of a novel animal model of cognitive dysfuntion and neurogenic treatment strategies

Spanswick, Simon, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Long-term adrenalectomy (ADX) results in a specific loss of dentate gyrus granule cells in the hippocampus of adult rats, occurring over a period of weeks to months. This loss of granule cells results in cognitive deficits in a number of tasks that depend on intact hippocampal function. The gradual nature of ADX-induced cell death and the ensuing deficits in cognition are similar to those experienced by patient populations suffering from a variety of pathological conditions. Here we present an animal model by which we use ADX to produce a loss of granule cells within the hippocampus of rats. We also provide experimental evidence for a treatment strategy by which the lost granule cells may be replaced, with the goal of functional recovery in mind. / xii, 191 leaves : ill. (chiefly col.) ; 28 cm
3

Experienced-induced immediate early gene expression in hippocampus after granule cell loss

Cardiff, James W January 2012 (has links)
Adrenalectomy (ADX) has been shown to cause selective degeneration of granule cells in the dentate gyrus (DG). This occurs due to the reduction of corticosterone (CORT) and behavioural deficits are associated with the loss of these neurons. Dentate lesions and cell loss associated with ADX have been shown to effect behaviour in a number of spatial tasks. In contras, it has been shown granule cell loss does not affect the specificity of place cells in CA3 and CA1. We used the ADX model to examine the role of DG granule cells plays in representing space using immediate early gene (IEG) activation in the principal hippocampal subfields after exploration of novel environments. Rats were allowed to free explore multiple novel environments and then the mRNA for the IEG Homer 1a (H1a) was used as a marker of neural activity. After degeneration of approximately half of the DG granule cells we found a significant increase in number of active cells in the DG, CA3 and CA1 in ADX animals. The results indicate a reduction in granule cells causes a dramatic increase in the proportion of remaining DG granule cells in response to exploration. The change in DG activation disrupts the representations in CA3 and CA1 and thereby affects behaviour. / vii, 60 leaves : ill. (some col.) ; 29 cm
4

Experience dependent plasticity of stroke outcome

Rakai, Brooke D., University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
Stroke outcome is highly variable. Experiments in this thesis test the hypothesis that experience prior to a stroke is an important variable in the manifestation of stroke. Optokinetic tracking was used to evaluate the effects of visual cortex stroke and MCA occlusion in rats. Normal laboratory rats showed a small, but significant decrease in tracking thresholds following visual cortex stroke. Animals with developmental visuomotor experience or reach training experience in adulthood, however, had tracking thresholds which were substantially increased, and the effects of visual cortex strokes were greater. MCA occlusions did not affect tracking behaviour. These data indicate that specific experiences engage neural plasticity that can alter brain function. These changes can, in turn, affect the behavioural manifestation of a stroke. Understanding the effect that environmental experience has on stroke outcome promises to enable better characterization of strokes, and set appropriate behavioural baselines for the measurement of recovery of function. / vi, 135 p. : ill. ; 29 cm
5

The effect of playful experiences on the plasticity and metaplasticity of the brain

Himmler, Brett T, University of Lethbridge. Faculty of Arts and Science January 2011 (has links)
The influence of play behavior on the brain was investigated through plasticity and metaplasticity methodology. Regions in both cortical and sub-cortical areas were investigated. Animals in both studies either experienced play with juvenile partners or did not experience play by being paired with an adult. Play experience alone was shown to affect the plasticity in the prefrontal cortex, although it did not show structural changes to sub-cortical regions. If animals were given nicotine after play experiences, the affects of play in the prefrontal cortex were abolished. In addition, playful behaviors appear to prime some sub-cortical regions of the brain for expression of later plasticity. Thus, play appears to alter the structure of multiple brain areas, but do so in different ways. / ix, 67 leaves ; 29 cm
6

Modulation of compensation and recovery in a rat model of motor cortex stroke : implications of transcranial direct current stimulation

Gidyk, Darryl C January 2011 (has links)
The present thesis examines the effects of transcranial direct current stimulation and forelimb rehabilitation on motor recovery after stroke in rats. Post-stroke motor outcomes were quantified using an innovative battery of behavioural tests and high resolution, in vivo electrophysiology was employed to examine coherence of neural activity between hemispheres. It was shown that rats that received brain stimulation concurrently with forelimb rehabilitation displayed functional recovery, whereas rats that received rehabilitation alone partially regained motor function, but the improvements were not due to restitution of original movement patterns. Results from electrophysiological recordings showed that rats that received brain stimulation and rehabilitation regained pre-stroke levels of interhemispheric coherence, but rats that received rehabilitation alone did not. The present thesis suggests that transcranial direct current stimulation may be a viable adjunct therapy to increase the efficacy of physical rehabilitation with regard to post-stroke motor outcomes. Interhemishperic coherence between homotopic neuronal populations may represent a biomarker of genuine motor recovery after stroke. / ix, 75 leaves : col. ill. ; 29 cm
7

Novel regulation of neuronal genes implicated in Alzheimer disease by microRNA

Long, Justin M. 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β peptide (Aβ) as neuritic plaques in the brain. The short Aβ peptide is derived from a large transmembrane precursor protein, APP. Two different proteolytic enzymes, BACE1 and the gamma-secretase complex, are responsible for cleaving Aβ peptide from APP through an intricate processing pathway. Dysregulation of APP and BACE1 levels leading to excess Aβ deposition has been implicated in various forms of AD. Thus, a major goal in this dissertation was to discover novel regulatory pathways that control APP and BACE1 expression as a means to identify novel drug targets central to the Aβ-generating process. MicroRNAs (miRNA) are short, non-coding RNAs that act as post-transcriptional regulators of gene expression through specific interactions with target mRNAs. Global analyses predict that over sixty percent of human transcripts contain evolutionarily conserved miRNA target sites. Therefore, the specific hypothesis tested was that miRNA are relevant regulators of APP and BACE1 expression. In this work, several specific miRNA were identified that regulate APP protein expression (miR-101, miR-153 and miR-346) or BACE1 expression (miR-339-5p). These miRNAs mediated their post-transcriptional effects via interactions with specific target sites in the APP and BACE1 transcripts. Importantly, these miRNA also altered secretion of Aβ peptides in primary human fetal brain cultures. Surprisingly, miR-346 stimulated APP expression via target sites in the APP 5’-UTR. The mechanism of this effect appears to involve other RNA-binding proteins that bind to the APP 5’-UTR. Expression analyses demonstrated that these miRNAs are expressed to varying degrees in the human brain. Notably, miR-101, miR-153 and miR-339-5p are dysregulated in the AD brain at various stages of the disease. The work in this dissertation supports the hypothesis that miRNAs are important regulators of APP and BACE1 expression and are capable of altering Aβ homeostasis. Therefore, these miRNA may possibly serve as novel therapeutic targets for AD.

Page generated in 0.0634 seconds