• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique markovienne ternaire cyclique sur graphes et quelques applications en biologie mathématique

Painchaud, Vincent 13 December 2023 (has links)
La modélisation de phénomènes biologiques qui impliquent un très grand nombre d'unités pose toujours un défi. De nombreux modèles présentent une vision globale de la dynamique moyenne du phénomène sous la forme d'un système d'équations différentielles ordinaires. C'est le cas notamment du modèle de Wilson-Cowan, qui décrit l'activité qui se propage dans un réseau de neurones biologiques. Une limite importante de ce modèle est qu'il néglige d'éventuelles corrélations entre les états de différents neurones. L'objectif premier de ce mémoire est ainsi de le généraliser afin de décrire de telles corrélations. On veut aussi mieux en comprendre les fondements mathématiques et les liens qu'il a avec des modèles semblables utilisés en épidémiologie et en écologie. Pour s'attaquer à ce problème, on construit une chaîne de Markov en temps continu qui décrit l'évolution des états des nœuds d'un graphe, et qui peut ainsi modéliser un phénomène biologique d'un point de vue microscopique. Étant donné le très grand nombre de nœuds que comporte le graphe, ce modèle microscopique est difficile à analyser. À partir du processus stochastique, on obtient alors par un moyennage un système d'équations différentielles ordinaires afin de décrire la dynamique sur le graphe d'un point de vue macroscopique. Deux applications de cette méthode sont alors présentées : l'une en épidémiologie et l'autre en neurosciences. On se concentre particulièrement sur l'application en neurosciences, qui permet de décrire la dynamique d'un réseau de neurones biologiques et de généraliser le modèle de Wilson-Cowan. En effet, on arrive à proposer deux nouveaux systèmes qui sont des extensions de ce modèle, puisqu'elles permettent de considérer des corrélations entre les états de différents neurones. On présente finalement un exemple dans lequel le comportement dynamique de l'une de ces extensions est plus près du comportement du processus stochastique que celui du modèle de Wilson-Cowan. / Modeling biological phenomena that involve a very large number of individual units is always a challenge. In this context, many models consist in a system of ordinary differential equations that gives an overview of the mean dynamics of a phenomenon. Among these is the Wilson-Cowan model, which describes the activity of a biological neural network. An important weakness of this model is that it neglects all possible correlations between the states of different neurons. The main goal of this thesis is to generalize Wilson-Cowan's model to describe such correlations. We also seek to get a better understanding of its mathematical foundations, as well as its links with other models used in epidemiology and ecology. To tackle this problem, we construct a continuous-time Markov chain to describe the evolution of the states of the nodes of a large graph. Such a process can then model a biological phenomenon from a microscopic point of view. Since the size of the graph is very large, this microscopic model is hard to analyze. Hence, from the stochastic process, we use an averaging method to obtain a system of ordinary differential equations which describes the dynamics on the graph from a macroscopic point of view. We show two applications of this method : one in epidemiology and the other in neuroscience. We focus on the application in neuroscience, which leads to a description of the dynamics a biological neural network and generalizes Wilson-Cowan's model. Indeed, we introduce two new systems which are extensions of this model since they can describe correlations between the states of different neurons. Finally, we present an example where the behavior of the stochastic process is closer to the dynamical behavior of one of the extensions than that of Wilson-Cowan's model.

Page generated in 0.088 seconds