• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cardiovascular effects of neurohypophysial peptides, urotensins, and catecholamines in the vertebrates: acomparative study.

Kong, Cheuk-chau, Charles, 江卓洲 January 1977 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
12

A correlated light and electron microscope study of degeneration in some hypothalamic connexions

Field, Pauline M. January 1970 (has links)
No description available.
13

Short term effects of stress hormones on cell division rate in wool follicles : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy /

Scobie, David Roger. January 1992 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Animal Sciences, 1992. / Includes bibliographical references (leaves 183-207).
14

Inositol Trisphosphate and Cyclic Adenosine Diphosphate-Ribose Increase Quantal Transmitter Release at Frog Motor Nerve Terminals: Possible Involvement of Smooth Endoplasmic Reticulum

Brailoiu, E., Miyamoto, M. D. 01 December 1999 (has links)
The release of chemical transmitter from nerve terminals is critically dependent on a transient increase in intracellular Ca2+.6,25 The increase in Ca2+ may be due to influx of Ca2+ from the extracellular fluid15 or release of Ca2+ from intracellular stores such as mitochondria.1,8,18 Whether Ca2+ utilized in transmitter release is liberated from organelles other than mitochondria is uncertain. Smooth endoplasmic reticulum is known to release Ca2+, e.g., on activation by inositol trisphosphate or cyclic adenosine diphosphate-ribose,2 so the possibility exists that Ca2+ from this source may be involved in the events leading to exocytosis. We examined this hypothesis by testing whether inositol trisphosphate and cyclic adenosine diphosphate-ribose modified transmitter release. We used liposomes to deliver these agents into the cytoplasmic compartment and binomial analysis to determine their effects on the quantal components of transmitter release. Administration of inositol trisphosphate (10-4M) caused a rapid, 25% increase in the number of quanta released. This was due to an increase in the number of functional release sites, as the other quantal parameters were unaffected. The effect was reversed with 40min of wash. Virtually identical results were obtained with cyclic adenosine diphosphate-ribose (10-4M). Inositol trisphosphate caused a 10% increase in quantal size, whereas cyclic adenosine diphosphate-ribose had no effect. The results suggest that quantal transmitter release can be increased by Ca2+ released from smooth endoplasmic reticulum upon stimulation by inositol trisphosphate or cyclic adenosine diphosphate-ribose. This may involve priming of synaptic vesicles at the release sites or mobilization of vesicles to the active zone. Inositol trisphosphate may have an additional action to increase the content of transmitter within the vesicles. These findings raise the possibility of a role of endogenous inositol phosphate and smooth endoplasmic reticulum in the regulation of cytoplasmic Ca2+ and transmitter release.
15

Localization of neurosecretory cells within the cerebral ganglia of Amphiphorus imparispinosus Griffin, 1898 (Hoplonemertea) and their possible regulatory role in the annual reproductive cycle

Jacobson, Gail H. 01 January 1977 (has links)
Nemerteans are common invertebrates along coastlines in both temperate and arctic climates throughout the world. Amphiphorus imparispinosus is a carnivorous member of this phylum that is found abundantly in the intertidal areas of the Oregon coast. As in many other invertebrate phyla, endocrine integration within the nemerteans is thought to be accomplished by neurosecretory mechanisms. In Amphiphorus the presence of these neurosecretory systems has not been previously shown. This project was undertaken to determine if neurosecretory cells are present within the central nervous system of this species and. further, to examine seasonal changes in the number and appearance of these cells. The second objective of this research was to determine the reproductive cycle of Amphiphorus and to examine a possible correlation between this cycle and seasonal changes in the neurosecretory system.
16

Short term effects of stress hormones on cell division rate in wool follicles : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Scobie, David Roger. January 1992 (has links) (PDF)
Includes bibliographical references (leaves 183-207) A local intradermal technique using colchicine to estimate cell division rate in wool follicles is refined and used throughout the thesis. Statistical methods used to analyse data obtained with this method are described and discussed. The implications of the findings are of great significance to research into the influence of physiological changes on wool production, and suggest experiments should be conducted under controlled environmental conditions, with a minimum of stress imposed on the animals.
17

Short term effects of stress hormones on cell division rate in wool follicles : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy / by David Roger Scobie.

Scobie, David Roger January 1992 (has links)
Includes bibliographical references (leaves 183-207) / ix, 207 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / A local intradermal technique using colchicine to estimate cell division rate in wool follicles is refined and used throughout the thesis. Statistical methods used to analyse data obtained with this method are described and discussed. The implications of the findings are of great significance to research into the influence of physiological changes on wool production, and suggest experiments should be conducted under controlled environmental conditions, with a minimum of stress imposed on the animals. / Thesis (Ph.D.)--University of Adelaide, Dept. of Animal Sciences, 1992
18

Real-Time Detection of Mitochondrial Inhibition at Frog Motor Nerve Terminals Using Increases in the Spatial Variance in Probability of Transmitter Release

Provan, Spencer D., Miyamoto, Michael D. 13 February 1995 (has links)
The effects of Hg2+, methyl mercury, and flufenamic acid, all of which inhibit mitochondria, were examined at frog motor nerve terminals. Unbiased estimates of m (no. of transmitter quanta released), n (no. of functional release sites), p (probability of release), and vars p (spatial variance in p) were obtained using K+-induced asynchronous neurosecretion (m, n and p not having the same definitions as with nerve-evoked release). Transient but significant increases in m, n, p and vars p were found with all three agents. These findings indicate that mitochondrial inhibition and release of sequestered Ca2+ can be detected as a real-time increase in vars p. The results also suggest that changes in vars p might be used to differentiate between cellular (membrane) and subcellular (organellar) actions of drugs at the nerve terminal.
19

Role of Internal Calcium Stores in Exocytosis and Neurotransmission: A Dissertation

Lefkowitz, Jason J. 11 May 2010 (has links)
A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx, elicits exocytosis. This dissertation examines the effect on both spontaneous and elicited exocytosis of a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca2+ syntillas. Ca2+ syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (Scintilla, Latin for spark, found in nerve terminals, normally synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal chromaffin cells (ACCs). Here the effect of Ca2+syntillas on exocytosis is examined in ACCs, which are widely used as model cells for the study of neurosecretion. Elicited exocytosis employs two sources of Ca2+, one due to influx from the cell exterior through voltage-gated Ca2+ channels (VGCCs) and another due to release from intracellular stores. To eliminate complications arising from Ca2+ influx, the first part of this dissertation examines spontaneous exocytosis where influx is not activated. We report that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine after which syntillas were decreased. We conclude that Ca2+syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas. The second part of this dissertation examines the role of syntillas in elicited exocytosis whereby Ca2+ influx is activated by physiologically relevant levels of stimulation. Catecholamine and neuropeptide release from ACCs into the circulation is controlled by the sympathetic division of the Autonomic Nervous System. To ensure proper homeostasis tightly controlled exocytic mechanisms must exist both in resting conditions, where minimal output is desirable and under stress, where maximal, but not total release is necessary. It is thought that sympathetic discharge accomplishes this task by regulating the frequency of Ca2+ influx through VGCCs, which serves as a direct trigger for exocytosis. But our studies on spontaneous release in ACCs revealed the presence of Ca2+ syntillas, which had the opposite effect of inhibiting release. Therefore, assuming Ca2+-induced Ca2+ release (CICR) via RYRs due to Ca2+ influx through VGCCs, we are confronted with a contradiction. Sympathetic discharge should increase syntilla frequency and that in turn should decreaseexocytosis, a paradox. A simple “explanation” might be that the increase in syntillas would act as a brake to prevent an overly great exocytic release. But upon investigation of this question a different finding emerged. We examined the role of syntillas under varying levels of physiologic stimulation in ACCs using simulated action potentials (sAPs) designed to mimic native input at frequencies associated with stress, 15 Hz, and the basal sympathetic tone, 0.5 Hz. Surprisingly, we found that sAPs delivered at 15 Hz or 0.5 Hz were able to completely abolish Ca2+ syntillas within a time frame of two minutes. This was not expected. Further, a single sAP is all that was necessary to initiate suppression of syntillas. Syntillas remained inhibited after 0.5 Hz stimulation but were only temporarily suppressed (for 2 minutes) by 15 Hz stimulation, where global [Ca2+]i was raised to 1 – 2 μM. Thus we propose that CICR, if present in these cells, is overridden by other processes. Hence it appears that inhibition of syntillas by action potentials in ACCs is due to a new process which is the opposite of CICR. This process needs to be investigated, and that will be one of the very next steps in the future. Finally we conclude that syntilla suppression by action potentials is part of the mechanism for elicited exocytosis, resolving the paradox. In the last chapter speculation is discussed into the mechanisms by which physiologic input in the form of an action potential can inhibit Ca2+ syntillas and furthermore, how the Ca2+ syntilla can inhibit exocytic output.
20

Effect of the Putative Cognitive Enhancer, Linopirdine (DuP 996), on Quantal Parameters of Acetylcholine Release at the Frog Neuromuscular Junction

Provan, Spencer D., Miyamoto, Michael D. 01 January 1994 (has links)
The subcellular mechanism and site of action of linopirdine or DuP 996 (3,3‐bis(4‐pyridinylmethyl)‐1‐phenylindolin‐2‐one) was investigated at the frog neuromuscular junction, using miniature endplate potential (m.e.p.p.) counts and a new method for obtaining unbiased estimates of n (number of functional release sites), p (probability of release), and varsp (spatial variance in p). DuP 996 produced an increase in m (no. of quanta released), which was due to an increase in n and p. The increase in m was concentration‐dependent over a range of 0.1–100 μm and completely reversible with 15 min of wash. There was a saturation in the increase in p, but not in the increase in m and n, for [DuP 996] >10 μm. By contrast, there was no major change in varsp. Block of presynaptic Na+‐ and Ca2+‐channels with 3 μm tetrodotoxin and 1.8 mm Co2+prevented the m.e.p.p. frequency increase to DuP 996, and this effect was completely reversed by washing. Application of the neuronal Ca2+‐channel blocker, ω‐conotoxin GVIA (1 μm) brought about a rapid and profound decrease in the m.e.p.p. frequency increase produced by DuP 996. The effect of the toxin was not reversed by prolonged washing. Block of voltage‐gated K+‐channels with 100 μm 4‐aminopyridine (4‐AP) resulted in only a small (28%) increase in m. The combination of 4‐AP (100 μm) and DuP 996 (10 μm) produced an increase in m (189%) which was much greater than the sum of the responses to each agent alone. This increase in m was due solely to an increase in n, as p and varsp were unchanged. For [DuP 996] up to 100 μm, there was no apparent change in the mean size, amplitude distribution, or time course of m.e.p.ps, signifying that it had no anticholinesterase activity. It is concluded that DuP 996 increases the release of quantal transmitter but not the postsynaptic response to the quanta. This appears to involve an effect at the nerve terminal membrane, most likely an increase in Ca2+‐conductance, and not an action to block K+‐conductance or to release Ca2+from intraterminal organelles. 1994 British Pharmacological Society

Page generated in 0.0516 seconds