• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 120
  • 51
  • 17
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 508
  • 180
  • 135
  • 85
  • 78
  • 62
  • 60
  • 48
  • 47
  • 46
  • 44
  • 40
  • 40
  • 39
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

[pt] SENSIBILIDADE DA PRÓXIMA GERAÇÃO DE DETECTORES DE NEUTRINO À OBSERVAÇÃO DOS EFEITOS DA MATÉRIA DA TERRA EM NEUTRINOS QUE VEM DE SUPERNOVAS NO CONTEXTO DO DECAIMIENTO INVISÍVEL DE NEUTRINOS / [en] SENSITIVITY OF NEXT-GENERATION NEUTRINO DETECTORS TO THE OBSERVATION OF EARTH MATTER EFFECTS ON SUPERNOVA NEUTRINOS IN THE FRAMEWORK OF INVISIBLE NEUTRINO DECAY

EDWIN ALEXANDER DELGADO INSUASTY 25 January 2022 (has links)
[pt] Nesta tese estudamos o potencial que terão a próxima geração de detectores de neutrinos (JUNO, Hyper-Kamiokande e DUNE) para a detecção dos efeitos da matéria da Terra através da identificação das modulações no espectro de energia dos neutrinos de supernovas de colapso de núcleo em nossa galáxia, assumindo a possibilidade do decaimiento invisível de v2 após os neutrinos terem deixado a estrela, caminho da Terra. Simulações recentes do colapso gravitacional (e subsequente explosão) de estrelas com massa maior do que ~ 8Mo mostram que durante a fase de esfriamento as energias médias (Eve) e (Evx) tornam-se muito semelhantes e os fluxos tendem a se igualar, tornando difícil observar os efeitos da matéria da Terra usando um único detector. Neste trabalho mostramos que a inclusão do decaimiento dos neutrinos também cria a possibilidade de observar os efeitos em consideração no canal de detecção de neutrinos se o ordenamento de massa for normal e no canal anti-neutrino se o ordenamento for invertido, o que não é esperado na ausência de decaimento. Em particular, se a taxa de decaimento for maior do que ~ 70%, descobrimos que o decaimento invisível de v2 pode aumentar as possibilidades de observação dos efeitos da matéria da Terra, mesmo para supernovas a uma distância de 10 kpc de nós. / [en] In this thesis we studied the potential that the next-generation neutrino detectors (JUNO, Hyper-Kamiokande and DUNE) will have to the detection of the Earth matter effects through the identification of the modulations in the energy spectrum of neutrinos from core-collapse supernovae in our galaxy, assuming the possibility of the invisible decay of v2 after the neutrinos have left the star, on their way to Earth. Recent simulations of gravitational collapse (and subsequent explosion) of stars more massive than ~ 8Mo show that during the cooling phase the average energies (EVe) and (Evx) become very similar and the fluxes tend to equalize, making it difficult to observe the Earth matter effects using a single detector. In this work we show that the inclusion of neutrino decay creates also the possibility of observing the effects under consideration in the neutrino detection channel if the mass ordering is normal and in the anti-neutrino channel if the ordering is inverted, which is not expected in the absence of neutrino decay. In particular, if the decay rate is more than ~ 70%, we find that the invisible neutrino decay of v2 can enhance the observation possibilities of Earth matter effects even for supernovae at a distance of 10 kpc from us.
392

Primordial nuclides and low-level counting at Felsenkeller

Turkat, Steffen 09 November 2023 (has links)
Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide.
393

The path to the search for rare event signals in XENON1T and XENONnT dark matter experiments

Zhu, Tianyu January 2022 (has links)
A wide array of cosmological and astrophysical observations support the existence of dark matter. More precisely, temperature anisotropy measurements of the cosmic microwave background (CMB) estimate that the current dark matter mass density is about five times that of the visible Universe. However, the nature of dark matter is not yet understood, inspiring numerous theoretical candidates. One popular candidate is the weakly-interacting massive particles or WIMPs that interact with standard model particles on the electroweak scale and could have the correct relic abundance today. Experiments such as XENON1T and XENONnT are designed to search for WIMPs on Earth using the dual-phase liquid xenon Time Projection Chamber (LXeTPC) technology. The XENON1T experiment operated until Dec. 2018 and had made the world-leading upper limits for WIMP-nucleus interactions at the time. Its successor, the XENONnT experiment, has been commissioned since 2021 and has taken data for its first science run. This thesis presents the commissioning data and the first science-run data analysis. This thesis describes an essential facet of the XENON1T and XENONnT experiments: how, step by step, the most elementary signals of single photons are reconstructed into events. Each event represents a particle interaction in the detector, including those from rare physical processes. This includes several technical developments with signal processing and simulation software that enable accurate reconstruction of signals and precisely evaluate the effect of various types of remaining miss-reconstruction. Furthermore, this thesis will present two analyses developed to search for rare events in XENON1T, only possible with an accurate and precise understanding of the event reconstruction. One is to search for ⁸𝐁 Solar neutrino events via 𝐂𝐄𝜈𝐍𝐒 process and low mass WIMPs by characterizing reconstruction efficiency and additional background at a lower energy threshold. The spin-independent DM-nucleus interaction is improved in the mass range between 3𝐆𝐞𝐕𝑐² and 11𝐆𝐞𝐕𝑐² by as much as an order of magnitude from the previous world-leading result, using data from the XENON1T experiment. The other is the search for the neutrinoless double-beta decay at its 𝑄-value, 𝑄_𝛽𝛽 = (2457.83$\pm$0.37)\,keV. The analysis demonstrated that the relative energy resolution at one 𝝈/𝝁 is as low as (0.80±$0.02) % in its one-ton fiducial mass, and for single-site interactions at 𝑄_𝛽𝛽, a world-leading resolution in 𝐋𝐗e experiment that enhance the experimental sensitivity to the neutrinoless double-beta decay events.
394

Computational Methods in Multi-Messenger Astrophysics using Gravitational Waves and High Energy Neutrinos

Countryman, Stefan Trklja January 2023 (has links)
This dissertation seeks to describe advancements made in computational methods for multi-messenger astrophysics (MMA) using gravitational waves GW and neutrinos during Advanced LIGO (aLIGO)’s first through third observing runs (O1-O3) and, looking forward, to describe novel computational techniques suited to the challenges of both the burgeoning MMA field and high-performance computing as a whole. The first two chapters provide an overview of MMA as it pertains to gravitational wave/high energy neutrino (GWHEN) searches, including a summary of expected astrophysical sources as well as GW, neutrino, and gamma-ray detectors used in their detection. These are followed in the third chapter by an in-depth discussion of LIGO’s timing system, particularly the diagnostic subsystem, describing both its role in MMA searches and the author’s contributions to the system itself. The fourth chapter provides a detailed description of the Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA), the GWHEN pipeline developed by the author and used in O2 and O3. Relevant past multi-messenger searches are described first, followed by the O2 and O3 analysis methods, the pipeline’s performance, scientific results, and finally, an in-depth account of the library’s structure and functionality. In particular, the author’s high-performance multi-order coordinates (MOC) HEALPix image analysis library, HPMOC, is described. HPMOC increases performance of HEALPix image manipulations by several orders of magnitude vs. naive single-resolution approaches while presenting a simple high-level interface and should prove useful for diverse future MMA searches. The performance improvements it provides for LLAMA are also covered. The final chapter of this dissertation builds on the approaches taken in developing HPMOC, presenting several novel methods for efficiently storing and analyzing large data sets, with applications to MMA and other data-intensive fields. A family of depth-first multi-resolution ordering of HEALPix images — DEPTH9, DEPTH19, and DEPTH40 — is defined, along with algorithms and use cases where it can improve on current approaches, including high-speed streaming calculations suitable for serverless compute or FPGAs. For performance-constrained analyses on HEALPix data (e.g. image analysis in multi-messenger search pipelines) using SIMD processors, breadth-first data structures can provide short-circuiting calculations in a data-parallel way on compressed data; a simple compression method is described with application to further improving LLAMA performance. A new storage scheme and associated algorithms for efficiently compressing and contracting tensors of varying sparsity is presented; these demuxed tensors (D-Tensors) have equivalent asymptotic time and space complexity to optimal representations of both dense and sparse matrices, and could be used as a universal drop-in replacement to reduce code complexity and developer effort while improving performance of existing non-optimized numerical code. Finally, the big bucket hash table (B-Table), a novel type of hash table making guarantees on data layout (vs. load factor), is described, along with optimizations it allows for (like hardware acceleration, online rebuilds, and hard realtime applications) that are not possible with existing hash table approaches. These innovations are presented in the hope that some will prove useful for improving future MMA searches and other data-intensive applications.
395

Neutrino Hotspots in the Universe: a Sensitivity Study Using the IceCube Neutrino Observatory

Ghiassi, Kiana, Salwén, Julia January 2023 (has links)
In this report, we aim to assess the sensitivity and 5$\sigma$ discovery potential of IceCube, the largest neutrino observatory on Earth, and compare it with prior findings. Our thesis will focus on a point source analysis, exploring the energy and declination dependencies, with particular emphasis on high-energy neutrinos. The primary objective is to establish the feasibility of detecting 5$\sigma$ evidence supporting the hypothesis that blazars serve as sources of neutrinos in the Southern sky, as suggested in a recent publication. Our findings indicate a substantial improvement in both discovery potential and sensitivity for the Southern sky in recent years. Furthermore, we highlight the increasing significance of investigating the origins of high-energy neutrinos in the Southern sky.
396

Microwave Detection of Cosmic Rays and Multi-Messenger Analysis of the Parameters of Ultra-High Energy Astrophysical Sources

Griffith, Nathan E. 28 May 2015 (has links)
No description available.
397

Seeking the Light in the Dark: Quests for Identifying Dark Matter

Ng, Chun Yu January 2016 (has links)
No description available.
398

Analysis of the second flight of the ANtarctic Impulsive Transient Antenna with a focus on filtering techniques

Dailey, Brian T. 18 May 2017 (has links)
No description available.
399

Exploring the universe with neutrinos

Strigari, Louis E. 14 July 2005 (has links)
No description available.
400

Liquid-phase purification for multi-ton xenon detectors and a search for dark matter and neutrinos in XENON1T

Howlett, Joseph January 2022 (has links)
This thesis describes research I conducted within the XENON program of dark matter searches. In particular, I focus on contributions I made to the development of a novel system for purifying liquid xenon employed in XENONnT, to the reconstruction and modeling of electronic and nuclear recoil signals by fitting calibration data, and in the employment of these tools to world-leading physics searches for spin-dependent DM-nucleus scattering and coherent neutrino-nucleus scattering from boron-8 solar neutrinos.

Page generated in 0.0968 seconds