• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Lower Pennsylvanian New River Formation: a Nonmarine Record of Glacioeustasy in a Foreland Basin

Korus, Jesse Thomas 20 August 2002 (has links)
Lower Pennsylvanian siliciclastic sedimentary rocks of the central Appalachian Basin consist predominantly of nonmarine, coal-bearing facies that developed within a fluvio-estuarine, trunk-tributary drainage system in a foreland-basin setting. Sheet-like, sandstone-mudstone bodies (up to 100 km wide and 70 m thick) developed in an axial trunk drainage system, whereas channel-like, sandstone-mudstone bodies (up to several km wide and 30 m thick) developed in tributaries oriented transverse to the thrust front. The origin of these strata has been debated largely because the paleogeomorphology and facies architecture of the New River Formation (NRF) are poorly understood. A sequence stratigraphic framework for the NRF, based on a combination of outcrop mapping and subsurface well-log analysis, reveals: 1) regionally significant erosional surfaces along the bases of sheet-like and channel-like sandstone bodies (sequence-boundaries), 2) fluvial- to estuarine-facies transitions (marine flooding surfaces), 3) erosionally based, framework-supported, quartz-pebble conglomerates (ravinement beds), and 4) regionally traceable, coarsening-upward intervals of strata (highstand deposits above maximum flooding surfaces). Using these criteria, both 3rd- and 4th-order sequences have been identified. An idealized 4th-order sequence consists of deeply incised, fluvial channel sandstone separated from overlying tidally modified estuarine sandstone and mudrock by a ravinement bed, and capped by coarsening-upward bayhead delta facies. The relative thickness of fluvial versus estuarine facies within a fourth-order sequence reflects a balance between accommodation and sediment supply within a 3rd-order relative sea level cycle. Lowermost 4th-order sequences are dominated by fluvial facies, whereas the uppermost sequences are dominated by estuarine facies. Therefore, 3rd-order sequence boundaries are interpreted to lie at the bases of the lowermost, fluvial-dominated fourth-order sequences. Coarsening-upward intervals that record the maximum landward extent of marine conditions are interpreted as highstand deposits of the composite third order sequence. Thus, the NRF consists of thick, superimposed fluvial sandstone of the lowstand systems tracts and anomalously thin transgressive and highstand systems tracts. Asymmetrical subsidence within the foreland basin resulted in westward amalgamation of multiple, 4th-order, fluvial valley-fill successions and sequence boundaries. The Early Pennsylvanian time period was characterized by global icehouse conditions and the tectonic assembly of Pangea. These events affected the geometry of the overall stratigraphic package, which can be attributed to high-magnitude, high-frequency, glacioeustatic sea-level fluctuations superimposed on asymmetric tectonic subsidence. / Master of Science

Page generated in 0.2818 seconds